
JASON ALLS

2ND E D I T I O N

Refactor your legacy C# code base and improve application
performance using best practices

Clean Code with C#

Clean Code w
ith C#

JASON ALLS

• Master the art of writing evolvable and adaptable code
• Implement the fail-pass-refactor methodology using a sample C#

console application
• Develop custom C# exceptions that provide meaningful information
• Identify low-quality C# code in need of refactoring
• Improve code performance using profiling and refactoring tools
• Create efficient and bug-free code using functional

programming techniques
• Write cross-platform code using MAUI
• Develop cloud-deployable microservices for versatile applications

WHAT YOU WILL LEARN

Traditionally associated with Windows desktop applications and game development, C# has expanded
into web, cloud, and mobile development. However, despite its extensive coding features, professionals
often encounter issues with eff iciency, scalability, and maintainability due to poor code. Clean Code in C#
guides you in identifying and resolving these problems using coding best practices.

This book starts by comparing good and bad code to emphasize the importance of coding standards,
principles, and methodologies. It then covers code reviews, unit testing, and test-driven development,
and addresses cross-cutt ing concerns. As you advance through the chapters, you’ll discover programming
best practices for objects, data structures, exception handling, and other aspects of writing C# computer
programs. You’ll also explore API design and code quality enhancement tools, while studying examples of
poor coding practices to understand what to avoid.

By the end of this clean code book, you’ll have the developed the skills needed to apply industry-approved
coding practices to write clean, readable, extendable, and maintainable C# code.

2 N D E D I T I O N

Clean Code with C#

www.packtpub.com

Get a free PDF of this book

packt.link/free-ebook/9781837635191

Clean Code with C#

Refactor your legacy C# code base and improve application
performance using best practices

Jason Alls

BIRMINGHAM—MUMBAI

Clean Code with C#
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Associate Group Product Manager: Kunal Sawant

Book Project Manager: Prajakta Naik

Senior Editor: Ruvika Rao

Technical Editor: Vidhisha Patidar

Copy Editor: Safis Editing

Indexer: Tejal Daruwale Soni

Production Designer: Alishon Mendonca

DevRel Marketing Coordinators: Shrinidhi Manoharan and Sonia Chauhan

Business Development Executive: Kriti Sharma

First published: July 2020
Second edition: December 2023

Production reference: 1141223

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83763-519-1

www.packtpub.com

http://www.packtpub.com

To my parents, for supporting me throughout my life and career. To all the people in the world of software
that have made my career possible, and who have employed me, trained me, and worked alongside me.

You have been instrumental in helping me to get to where I am today.

I thank you all.

– Jason Alls

Contributors

About the author
Jason Alls has been programming for over 21 years using Microsoft technologies. Working with an
Australasian company, he started his career developing call center management reporting software
used by global clients including telecom providers, banks, airlines, and the police. He then moved on
to develop GIS marketing applications and worked in the banking sector performing data migrations
between Oracle and SQL Server. Certified as an MCAD in C# since 2005, he has been involved in the
development of various desktop, web, and mobile applications.

I would like to thank my parents for always being there, and supporting me throughout my life and
career. Career-wise, I would like to thank all the people in the world of computing who have made my
career possible. Especially those who have employed me, trained me, and worked alongside me. You
have helped me to get to where I am today.

A special thank you to all the staff at Packt Publishing who provided me with the opportunity to write
this book, and who assisted me in improving the content. It has been an eye-opening experience and
a pleasant one. It is your hard work and dedication to the book-writing process that enables computer
programmers like me to become accomplished authors. This book would not be what it is without your
valuable input.

About the reviewers
Vladica Ognjanovic, CEO of MVP-Soft based in the USA and Serbia, holds a Bachelor’s in Computer
Science from the University of Niš. With over two decades in the tech industry, Vladica has mastered
IT management, software development, and database design. He’s led various enterprise projects,
including custom ERP solutions, price tracking systems, IoT solutions, demonstrating strong skills
in web, desktop, and database technologies. Known for innovative problem-solving, Vladica excels
in team leadership and client engagement, making significant contributions to software development
and project management.

Omprakash Pandey, has been working with industry experts and helping SW consultants from
last 20 years. His SW expertise ranges from Microsoft 365, Power Platform, Security Solutions,
JEE technologies, .Net and Cloud expertise. He has been working on areas of Azure Infrastructure,
Azure Development using C#, Azure Architecting. He has also delivered consulting assignments and
developed products for SharePoint custom solutions using .Net. Organizing resources and ensuring
project completion in right time DevOps has been the key transformation agent for the same. He is
also expert in Azure DevOps solution.

Since it first computer, a Commodore Vic20, Gian Maria was interested in everything regarding
Computer Programming. Its passion range from low level (Assembly) to project management. He
worked with Microsoft .NET technologies since very first beta as a passionate Visual Basic .NET then
C# software architect/developer. He has strong experience in DevOps methodologies and techniques,
covering all aspect from managing Requirements to effectively manage code with Git to automatic
Deployment on premise and on cloud resources. Always curious about new technologies he lives and
work in Italy as an independent consultant.

Jegadeesan Ponnusamy worked in the software industry for more than 16 years. He has a master’s
degree in software engineering from the Birla Institute of Technology & Science, Pilani. He received
gold medal, Sri Hiren D. Barucha Memorial award for his excellence in academic and other recognitions
for his work in his career. He currently lives in Voorhees, New Jersey with his wife and two daughters.

Preface� xvii

1
Coding Standards and Principles in C#� 1

Technical requirements� 2
Good code versus bad code� 2
The need for coding standards,
principles, and methodologies� 3
Coding standards� 4

Coding principles� 5
Coding methodologies� 10

Summary� 21
Questions� 22
Further reading� 23

2
Code Review – Process and Importance� 25

A brief introduction to GitHub� 26
What is GitHub?� 26
GitHub’s use within the code review process� 27
Resources for learning� 28

The code review process� 29
Preparing code for review� 30
Leading a code review� 32
Issuing a pull request� 33
Responding to a pull request� 37
Effects of feedback on reviewees� 40

Knowing what to review� 42

The company’s coding guidelines and
business requirement(s)� 43
Naming conventions� 43
Formatting� 43
Testing� 44
Documentation� 45
Architectural guidelines and design patterns� 45
Performance and security� 47

Knowing when to send code for review�47
Providing and responding to review
feedback� 48
Providing feedback as a reviewer� 49

Table of Contents

Table of Contentsviii

Responding to feedback as a reviewee� 49

Summary� 50

Questions� 50
Further reading� 51

3
Classes, Objects, and Data Structures� 53

Technical requirements� 54
Organizing classes� 54
A class should have only one
responsibility� 58
Class organization� 60
Commenting for documentation
generation� 61
Cohesion and coupling� 65
Tight coupling� 66
Low coupling� 67
Low cohesion� 68
High cohesion� 70

Designing for change� 71
Interface-oriented programming� 71
Dependency injection and inversion of control� 74

The Law of Demeter� 81
A good and a bad example (chaining) of the
Law of Demeter� 83

Immutable objects and data structures� 85
Using records to create immutable objects� 87

Objects should hide data and expose
methods� 88
An example of encapsulation� 88

Data structures should expose data
and have no methods� 89
The SOLID software methodology� 90
SRP� 90
Open/closed principle (OCP)� 91
Liskov substitution principle (LSP)� 91
Interface segregation principle (ISP)� 93
Dependency inversion principle (DIP)� 94

Summary� 95
Questions� 96
Further reading� 96

4
Writing Clean Functions� 97

Technical requirements� 98
Understanding the difference
between OOP and FP� 98
Explanation of the differences� 99
Understanding why FP can lead to cleaner
functions� 101

Unclean methods and how they affect
software� 102
FP and clean methods� 104
FP examples� 105
Keeping methods small� 109
Indenting code� 112

Table of Contents ix

Breaking out of loops� 113
Avoiding duplication� 113
Avoiding multiple parameters� 115
Implementing the SRP� 117
Handling exceptions in FP� 123
Adding comments for readability� 125
XML documentation comments� 125
Inline comments� 126

Variable declaration and memory
management� 126

Declaring variables close to their usage� 126
Disposing of resources� 127

Applying security in methods,
especially in APIs� 127
Input validation� 127
Authentication and authorization� 128
Protecting sensitive data� 128

Summary� 128
Questions� 129
Further reading� 129

5
Exception Handling� 131

Technical requirements� 132
Overview of exception handling in C#�132
try-catch� 132
try-catch-finally� 133

Clean code exception-handling
principles� 135
SRP� 136
OCP� 138
DIP� 142

Best practices for handling exceptions�144
Handling the TPL
AggregateException exception� 145
Use await with try-catch inside async methods� 145
Flatten the exception hierarchy� 146
Handle individual exceptions� 146
Handle exceptions as they occur� 147

Creating custom exceptions and
when to use them� 147
Avoiding common mistakes in
exception handling� 149
Testing exception handling� 151
Unit testing exception handling� 152
Integration testing exception handling� 153
End-to-end testing exception handling� 155

An employee management example
of mocking and unit testing with
correct exception handling� 156
Summary� 161
Questions� 162
Further reading� 163

Table of Contentsx

6
Unit Testing� 165

Technical requirements� 166
Understanding unit testing� 166
Writing testable code� 166
TDD� 168
An example of using the AAA TDD pattern� 169

Choosing a testing framework� 170
Testing framework attribute differences� 172
TDD using MSTest� 173
TDD using NUnit� 174
TDD using xUnit� 175
Running tests in Visual Studio� 176

Writing effective unit tests� 177

Using code coverage analysis in Visual Studio
2022� 178
Ensuring your unit tests themselves are correct� 179
Using stubs in place of mocks� 179
Mocking data� 180

Integrating tests into the continuous
integration and deployment (CI/CD)
pipeline� 184
Integrating tests into an Azure DevOps CI/
CD pipeline� 184

Problem tests� 186
Summary� 188
Questions� 189
Further reading� 189

7
Designing and Developing APIs� 191

Technical requirements� 191
What is an API?� 192
APIs help different consumers build loosely
coupled applications� 192
Idempotent and non-idempotent operations� 193
HTTP verbs� 194
Important API design topics you must consider�196
How can clean code help API design and
development?� 198
The API design process� 200
API security risks and their mitigations� 202
On-premises APIs versus cloud APIs� 205

API development in C#� 207

Web API security with OWASP� 210
Importance of OWASP adherence in C# API
development� 210
Creating an OWASP-compliant API� 211
Implementing OWASP-compliant two-factor
authentication (2FA)� 215
OpenID Connect (OIDC) and OAuth 2.0
(OAuth2)� 219

Summary� 223
Questions� 224
Further reading� 225

Table of Contents xi

8
Addressing Cross-Cutting Concerns� 227

A definition of cross-cutting concerns�228
Importance and impact on software
development� 230
Common examples of cross-cutting
concerns� 231
Logging� 231
Error handling and exception management� 232
Caching� 236
Performance optimization� 237

Transaction management� 239
Validation� 241
Auditing and compliance� 242
Localization and internationalization� 244
Logging and monitoring� 246

Summary� 247
Questions� 248
Further reading� 248

9
AOP with PostSharp� 251

Technical requirements� 251
AOP� 252
AOP frameworks� 253

How AOP works with PostSharp� 254
Extending the aspect framework� 255

Project – Cross-cutting concerns
reusable library� 258
Adding a caching concern� 259
Adding file logging capabilities� 260
Adding an exception-handling concern� 263
Adding a security concern� 264
Adding a validation concern� 267
Adding a transaction concern� 272

Adding a resource pool concern� 273
Adding a configuration settings concern� 274
Adding an instrumentation concern� 274

PostSharp and build pipeline
considerations� 275
Dynamic AOP with Castle.
DynamicProxy� 276
Summary� 278
Questions� 278
Further reading� 278

Table of Contentsxii

10
Using Tools to Improve Code Quality� 279

Technical requirements� 280
Code analysis� 280
Using quick actions� 282
Using the JetBrains dotTrace profiler� 283
Using JetBrains ReSharper� 285
Using Telerik JustDecompile� 295

Continuous integration with GitHub
Actions and CodeQL� 296
Summary� 298
Questions� 298
Further reading� 299

11
Refactoring C# Code� 301

Technical requirements� 302
Application-level code smells� 302
Boolean blindness� 302
Combinatorial explosion� 304
Contrived complexity� 305
Data clump� 306
Deodorant comments� 307
Duplicate code� 307
Lost intent� 308
The mutation of variables� 308
The oddball solution� 311
Shotgun surgery� 313
Solution sprawl� 314
Uncontrolled side effects� 315

Class-level code smells� 315
Cyclomatic complexity� 315
Divergent change� 319
Downcasting� 320
Excessive literal use� 320
Feature envy� 320
Inappropriate intimacy� 322
Indecent exposure� 322
The large class (the God object)� 323

The lazy class (the freeloader and the lazy
object)� 323
The middleman class� 323
The orphan class of variables and constants� 323
Primitive obsession� 324
Refused bequest� 326
Speculative generality� 327
Tell, Don’t Ask� 327
Temporary fields� 327

Method-level smells� 327
The black sheep method� 327
Cyclomatic complexity� 327
Contrived complexity� 328
Dead code� 328
Excessive data return� 328
Feature envy� 328
Identifier size� 328
Inappropriate intimacy� 329
Long lines (God lines)� 329
Lazy methods� 329
Long methods (God methods)� 329
Long parameter lists (too many parameters)� 329
Message chains� 329

Table of Contents xiii

The middleman method� 330
Oddball solutions� 330
Speculative generality� 330

Summary� 330
Questions� 331
Further reading� 332

12
Functional Programming� 333

Technical requirements� 334
Imperative versus functional
programming� 334
Imperative programming� 334
Key differences� 336

Overview of functional
programming in C#� 338
First-class functions and Lambda
expressions� 339
Lambda expressions in C#� 339
Higher-order functions� 340
Immutability and pure functions� 342
Functional composition� 343
Using Lambda expressions� 343
Using LINQ and extension methods� 344
Using higher-order functions� 344

Option types and the Maybe monad� 344
Usage of option types in C#� 346
The Maybe monad in C#� 346

Functional error handling� 348
Option types� 349
The Maybe monad� 349
The Either monad� 349
Result objects� 350

Functional data transformation and
pipelines� 350
Lazy evaluation� 353
Pattern matching� 355
Currying and partial application� 357
Currying� 357
Partial application� 357
Key differences� 358

Concurrency with functional
programming� 358
Recursion� 362
Summary� 363
Questions� 364
Further reading� 364

13
Cross-Platform Application Development with MAUI� 367

Technical requirements� 368
Project overview� 368
Windows version� 368
Android version� 370

Creating the project� 374
Understanding XAML structure� 377
The MVVM pattern� 379
Adding CommunityToolkit.Mvvm� 380
The models� 381

Table of Contentsxiv

The ViewModels� 384
The views� 387
Configuring our to-do application� 391

Summary� 392
Questions� 392
Further reading� 393

14
Microservices� 395

What are microservices?� 396
The downsides of microservices, some
gotchas experienced by microservices, and
how they can be overcome and avoided� 398
Comparison between microservices and
monoliths� 400

The design process for building
successful microservices� 401
The application life cycle
management (ALM) of microservices� 403
Microservice architecture patterns� 405
Service registration and discovery� 407
Service discovery� 407
Service registration� 408

Containerization and orchestration
of microservices� 409
Containerization� 409
Orchestration� 409

Serverless� 410
API gateways� 411

Event-driven communication� 412
Service resilience and fault tolerance� 414
Service monitoring and observability� 415
Service monitoring� 416
Observability� 416

Security� 417
CI/CD� 418
Microservice testing� 420
Scaling microservices� 421
Versioning and compatibility� 423
Microservices best practices and anti-
patterns� 424
Microservices best practices� 424
Microservices anti-patterns� 425

Case studies and real-world examples� 427
Summary� 428
Questions� 429
Further reading� 429

Assessments� 431

Chapter 1� 431
Chapter 2� 431
Chapter 3� 432
Chapter 4� 432

Chapter 5� 433
Chapter 6� 434
Chapter 7� 435
Chapter 8� 436

Table of Contents xv

Chapter 9� 436
Chapter 10� 436
Chapter 11� 437

Chapter 12� 440
Chapter 13� 441
Chapter 14� 443

Index� 445

Other Books You May Enjoy� 466

Preface

Welcome to Clean Code in C#. You will learn how to identify problematic code that, while it compiles,
does not lend itself to readability, maintainability, and extensibility. You will also learn about various
tools and patterns, along with ways to refactor code to make it clean.

Who this book is for
This book is aimed at computer programmers with a good grasp of the C# programming language
who would like guidance on identifying problematic code and writing clean code in C#. Primarily,
the reader base will range from graduate to mid-level programmers, but even senior programmers
may find this book valuable.

What this book covers
Chapter 1, Coding Standards and Principles in C#, contrasts some good code with some bad code. As
you read through this chapter, you will come to understand why you need coding standards, principles,
methodologies, and code conventions. You will learn about modularity and the KISS, YAGNI, DRY,
SOLID, and Occam’s razor design guidelines.

Chapter 2, Code Review – Process and Importance, takes you through the code review process and
provides reasons for its importance. In this chapter, you are guided through the process of preparing
code for review, leading a code review, knowing what to review, knowing when to send code for review,
and how to provide and respond to review feedback.

Chapter 3, Classes, Objects, and Data Structures, covers the broad topics of class organization, documentation
comments, cohesion, coupling, the Law of Demeter, and immutable objects and data structures. By the
end of the chapter, you will be able to write code that is well organized and only has a single responsibility,
provide users of the code with relevant documentation, and make the code extensible.

Chapter 4, Writing Clean Functions, helps you to understand functional programming, how to keep
methods small, and how to avoid code duplication and multiple parameters. By the time you finish
this chapter, you will be able to describe functional programming, write functional code, avoid writing
code with more than two parameters, write immutable data objects and structures, keep your methods
small, and write code that adheres to the single responsibility principle.

Prefacexviii

Chapter 5, Exception Handling, covers checked and unchecked exceptions, and NullPointerEx-
ception, and how to avoid them as well as covering, business rule exceptions, providing meaningful
data, and building your own custom exceptions.

Chapter 6, Unit Testing, takes you through using the Behavior-Driven Development (BDD) software
methodology using SpecFlow, and Test-Driven Development (TDD) using MSTest and NUnit. You
will learn how to write mock (fake) objects using Moq, and how to use the TDD software methodology
to write tests that fail, make the tests pass, and then refactor the code once it passes.

Chapter 7, Designing and Developing APIs, helps you to understand what an API is, and covers API
proxies, API design guidelines, API design using RAML, and Swagger API development. In this chapter,
you will design a language-agnostic API in RAML and develop it in C#, and you will document your
API using Swagger.

Chapter 8, Addressing Cross-Cutting Concerns, introduces you to using PostSharp to address cross-
cutting concerns using aspects and attributes that form the basis of aspect-oriented development. You
will also learn how to use proxies and decorators.

Chapter 9, AOP with PostSharp, explores using PostSharp to implement Aspect-Oriented Programming
(AOP). With our AOP framework, we will learn how to manage common functionalities such as
exception handling, logging, security, and transactions within our applications. But before that, let’s
put your brain to work to see what you have learned.

Chapter 10, Using Tools to Improve Code Quality, exposes you to various tools that will assist you in
writing quality code and improving the quality of existing code. You’ll gain exposure to code metrics
and code analysis, quick actions, the JetBrains tools called dotTrace Profiler and Resharper, and
Telerik JustDecompile.

Chapter 11, Refactoring C# Code, is the first of two chapters that take you through different types
of problematic code and show you how to modify it to be clean code that is easy to read, maintain,
and extend. Code problems are listed alphabetically through each chapter. Here, you will cover such
topics as class dependencies, code that can’t be modified, collections, and combinatorial explosion.

Chapter 12, Functional Programming, provides a detailed look at functional programming. You will learn
the difference between imperative and functional programming. Then you will learn about delegates,
anonymous methods, and lambda expressions Next, you move on to the topics of asynchronous
functional programming, recursion, and then finally, pattern matching.

Chapter 13, Cross-platform development with MAUI, delves into building applications with .NET
MAUI. You will learn the differences between the older Xamarin.Forms and the newer MAUI,
including using UI controls using the MVVM pattern, data binding, access device resources, data
access accessing remote microservices and Azure Functions, dependency injection, and styling.

Chapter 14, Microservices, looks at developing microservices using Azure Functions.

Preface xix

To get the most out of this book

Software/hardware covered in the book Requirements
Visual Studio 2019 Windows 10, macOS
Atom Windows 10, macOS, Linux: https://atom.io/
Azure resources Azure subscription: https://azure.microsoft.

com/en-gb/

Azure Key Vault Azure subscription: https://azure.microsoft.
com/en-gb/

The Morningstar API Obtain your own API key from https://rapidapi.
com/integraatio/api/morningstar1

Postman Windows 10, macOS, Linux: https://www.postman.
com/

It will be useful to have these in place before you start reading and working your way through the chapters.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

You should have basic experience using Visual Studio 2019 Community Edition or higher, and basic
C# programming skills, including writing console applications. Many examples will be in the form
of C# console applications. The main project use ASP.NET. It will help if you are capable of writing
ASP.NET websites using the framework and core. However, don’t worry – you will be guided through
the steps that you need to go through.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main. If
there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

https://atom.io/
https://azure.microsoft.com/en-gb/
https://azure.microsoft.com/en-gb/
https://azure.microsoft.com/en-gb/
https://azure.microsoft.com/en-gb/
https://rapidapi.com/integraatio/api/morningstar1
https://rapidapi.com/integraatio/api/morningstar1
https://www.postman.com/
https://www.postman.com/
https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main
https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexx

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The
InMemoryRepository class implements the GetApiKey() method of IRepository. This
returns a dictionary of API keys. These keys will be stored in our_apiKeys dictionary member variable”

A block of code is set as follows:

using CH10_DividendCalendar.Security.Authentication;
using System.Threading.Tasks;

namespace CH10_DividendCalendar.Repository {
 public interface IRepository
 {
 Task<ApiKey> GetApiKey(string providedApiKey);
 }
}

Any command-line input or output is written as follows:

az group create --name "<YourResourceGroupName>" --location "East US"

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “To create the app service, right-click
the project you created and select Publish from the menu.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

http://www.packtpub.com/support/errata

Preface xxi

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Clean Code with C# , we’d love to hear your thoughts! Please click here to
go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1837635196
https://packt.link/r/1837635196

Prefacexxii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837635191

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837635191

1
Coding Standards and

Principles in C#

The primary goal of coding standards and principles in C# is for programmers to become better at
their craft by programming code that is more performant and easier to maintain. In this chapter, we
will look at some examples of good code contrasted with examples of bad code. This will lead nicely
into discussing why we need coding standards, principles, and methodologies. As we delve into
coding standards, we will consider conventions for naming, commenting, and formatting source
code, including classes, methods, and variables.

A big program can be rather unwieldy to understand and maintain. For programming teams, getting to
know the code and what it does can be a daunting prospect, and they can find it hard to work together
on such projects. Because of this, we will look at how to use modularity to break programs down
into smaller modules that all work together to produce a fully functioning solution that is also fully
testable, can be worked on by multiple teams simultaneously, and is much easier to read, understand,
and document. And we’ll finish this chapter by looking at some programming design guidelines.

The following topics will be covered in this chapter:

•	 The need for coding standards, principles, and methodologies

•	 Naming conventions and methods

•	 Comments and formatting

•	 Modularity

•	 KISS

•	 YAGNI

•	 DRY

•	 SOLID

•	 Occam’s razor

Coding Standards and Principles in C#2

After reading this chapter, you will be able to do the following:

•	 Understand how good code positively impacts projects

•	 Understand why bad code negatively impacts projects.

•	 Understand how coding standards improve code and how to enforce them

•	 Understand how coding principles enhance software quality

•	 Understand how methodologies aid the development of clean code

•	 Implement coding standards

•	 Choose solutions with the least assumptions

We’ll now look at the technical requirements that you will need as you work through this book.

Technical requirements
To work on the code in this book, you will need to download and install the latest version of Visual
Studio Community Edition. The IDE can be downloaded from https://visualstudio.
microsoft.com.

Note
There are no code samples for this chapter.

Good code versus bad code
Both good and bad code compile. There are reasons why code is labeled good code and bad code, as
shown in the following comparison table:

Good Code Bad Code
Proper indentation Improper indentation
Meaningful comments Comments that state the obvious
API documentation comments Comments that excuse bad code and commented-

out lines of code
Proper organization using namespaces Improper organization using namespaces
Good naming conventions Bad naming conventions
Classes that do one thing Classes that do multiple things
Methods that do a single thing Methods that do multiple things
Methods with less than 10 lines, and preferably
no more than 4

Methods with more than 10 lines of code

https://visualstudio.microsoft.com
https://visualstudio.microsoft.com

The need for coding standards, principles, and methodologies 3

Methods with no more than two parameters Methods with more than two parameters
Proper use of exceptions Using exceptions to control program flow
Readable code Code that is difficult to read
Code that is loosely coupled Code that is tightly couples
High cohesion Low cohesion
Objects are cleanly disposed of Objects are left hanging around
Avoidance of the Finalize method Use of the Finalize method
The right level of abstraction Over-engineering
Use of regions in larger classes Lack of regions in larger classes
Encapsulation and information hiding Directly exposing information
Object-orientated code Spaghetti code
Design patterns Design anti-patterns

Table 1.1: Good code versus bad code

This table contains an extensive list of what makes code good, and what makes code bad. As you
work on your code and review your peer’s code, try and maintain as much of this list in your head
as you can. It will come in handy for ensuring you have the right, good, clean code and can identify
bad code and refactor it.

We will now look at the need for coding standards, principles, and software methodologies.

The need for coding standards, principles, and
methodologies
As a C# programmer, coding standards, principles, and methodologies are important for several reasons:

•	 Consistency: Coding standards, principles, and methodologies help ensure consistency across
a code base. By following these guidelines, developers can ensure that their code is written in
a similar style and adheres to the same best practices, making it easier for other developers to
understand, modify, and maintain the code.

•	 Quality: Coding standards, principles, and methodologies promote the use of best practices
that improve code quality, such as error handling, documentation, and modular design.
Following these guidelines can help reduce bugs, improve performance, and make the code
more maintainable over time.

•	 Collaboration: When a team of developers is working on a project, everyone must be on the
same page. Coding standards, principles, and methodologies can help ensure that everyone is
working toward the same goals and following the same guidelines, making it easier to collaborate
and avoid conflicts.

Coding Standards and Principles in C#4

•	 Efficiency: Following coding standards, principles, and methodologies can help improve efficiency
by promoting the use of reusable code, modular design, and other best practices. This can
reduce development time and make it easier to modify and maintain the code base over time.

•	 Professionalism: Following coding standards, principles, and methodologies is a hallmark
of professionalism in the software development industry. It shows that you are committed to
producing high-quality code that is easy to understand, maintain, and extend.

Overall, coding standards, principles, and methodologies are important for ensuring that software
is of high quality, easy to maintain, and produced professionally and efficiently. By following these
guidelines, C# programmers can improve their code, work more effectively with their team, and build
better software.

Coding standards

Coding standards are a set of guidelines and best practices that are used by C# programmers to write
high-quality, maintainable, and readable code. These standards help promote consistency across the
code base and make it easier for developers to understand, modify, and maintain each other’s code.
Here are some key components of coding standards for C# programmers:

•	 Naming conventions: C# programmers typically use consistent and meaningful names for
variables, methods, classes, and other programming elements. This makes it easier to understand
the purpose of each element and promotes code readability.

•	 Code formatting: C# programmers typically use consistent formatting styles for their code,
including indentation, line breaks, and spacing. This makes it easier to read and understand
the code, especially when working with code that spans multiple lines.

•	 Error handling: C# programmers typically use consistent error-handling practices, including
try-catch blocks, error messages, and logging. This helps to improve the reliability and
maintainability of the code and makes it easier to diagnose and fix errors.

•	 Code reuse: C# programmers typically use inheritance, polymorphism, and other object-
oriented programming principles to promote code reuse. This helps reduce duplication of code
and makes it easier to maintain and modify the code base.

•	 Code documentation: C# programmers typically use XML comments and other forms of
documentation to describe the purpose and behavior of their code. This helps make the code
base more understandable and maintainable, especially for developers who are new to the project.

•	 Code reviews: C# programmers typically conduct code reviews to ensure that the code meets
the coding standards and other best practices. This helps improve the quality of the code and
promotes consistency across the code base.

By following coding standards, C# programmers can write code that is easy to read, understand, and
maintain, which helps reduce errors and improve the overall quality of the software.

The need for coding standards, principles, and methodologies 5

Coding principles

Coding principles, also known as software development principles or programming principles, are
a set of guidelines or best practices that software developers use to write high-quality, efficient, and
maintainable code. These principles are designed to help developers write code that is easy to understand,
modify, and debug, and that meets the requirements of the project or application.

There are many different coding principles, each with a focus and set of guidelines. Some common
coding principles include the following:

•	 SOLID principles: A set of five principles that focus on object-oriented design and programming,
including the Single Responsibility Principle, Open/Closed Principle, Liskov Substitution
Principle, Interface Segregation Principle, and Dependency Inversion Principle.

•	 KISS principle: Keep It Simple, Stupid. This principle emphasizes the importance of simplicity
in software design and suggests that simple solutions are often the best solutions.

•	 DRY principle: Don’t Repeat Yourself. This principle suggests that code should not be duplicated
or repeated unnecessarily and that developers should strive to write reusable and modular code.

•	 YAGNI principle: You Ain’t Gonna Need It. This principle suggests that developers should
only implement features or functionality that are necessary for the current requirements and
should avoid over-engineering or adding unnecessary complexity to the code.

•	 Modularity principle: This principle emphasizes the importance of breaking down a software
system into smaller, self-contained modules or components.

By following these coding principles and others like them, software developers can write code that is
easier to understand, maintain, and modify, and that meets the needs of the project or application.

Coding conventions

Coding conventions are a set of guidelines and rules that a C# programmer follows when writing code.
These conventions help ensure that the code is consistent, readable, and maintainable, regardless of
who wrote it. Here are some common coding conventions for C# programmers:

•	 Naming conventions: C# programmers typically use PascalCase for class names and method
names, and camelCase for variable names. Constants are usually written in ALL_CAPS.

•	 Indentation and braces: C# programmers typically use four spaces for indentation and place
opening braces on the same line as the statement that opens the block. Closing braces are
typically placed on a new line.

•	 Comments: C# programmers typically use XML comments to document their code, including
descriptions of classes, methods, and parameters.

•	 Code formatting: C# programmers typically use a consistent formatting style for their code,
including spacing, line breaks, and indentation.

Coding Standards and Principles in C#6

•	 Error handling: C# programmers typically use try-catch blocks to handle exceptions and avoid
using exceptions for control flow.

•	 Code reuse: C# programmers typically use inheritance and interfaces to promote code reuse
and avoid duplicating code.

•	 Coding standards: C# programmers typically follow coding standards established by their
team or organization, which may include guidelines for naming, indentation, comments, and
other coding conventions.

By following these coding conventions and others like them, C# programmers can write code that is
consistent, readable, and maintainable, which can help reduce errors, improve productivity, and make
it easier for other programmers to work with their code.

Microsoft coding conventions adoption

The Microsoft coding guidelines for C# programmers, also known as the .NET Framework Design
Guidelines, were developed by Microsoft to provide a set of best practices for developing high-quality,
reliable, and maintainable code. The guidelines cover a wide range of topics, including naming
conventions, code formatting, error handling, performance, and security.

The adoption of the Microsoft coding guidelines has been widespread among C# programmers,
especially those who develop applications for the Microsoft .NET Framework. These guidelines have
become a de facto standard for C# programming, and many third-party tools and libraries have been
developed to support their use.

These guidelines are regularly updated to reflect changes in the C# language, the .NET Framework,
and best practices in software development. They are freely available online and are used by many
organizations as a basis for their coding standards.

Overall, the adoption of the Microsoft coding guidelines has helped improve the quality and reliability
of C# code and has made it easier for developers to write, read, and maintain code written by others.

Modularity

As a C# software developer, it is important to understand the modularity coding principle, which is
a software design principle that emphasizes the importance of breaking down a software system into
smaller, self-contained modules or components.

The modularity principle is based on the idea that complex systems can be easier to understand, maintain,
and modify if they are broken down into smaller, more manageable parts. Each module should have a
clear responsibility or purpose and should interact with other modules through well-defined interfaces.

To apply the modularity principle in C# programming, developers should design their software systems
as a collection of self-contained modules or components. Each module should have a clearly defined
purpose and a well-defined interface for interacting with other modules. This can help reduce the
complexity of the system as developers can focus on designing and implementing individual modules
without having to worry about the entire system.

The need for coding standards, principles, and methodologies 7

By following the modularity principle, C# developers can create more maintainable and efficient
code. They can also improve the scalability and flexibility of the system, as modules can be added or
removed as needed without this affecting the entire system.

However, it is important to note that modularity can also introduce additional complexity and overhead,
especially if the interfaces between modules are not well-designed or if the system is not properly
tested. C# developers should still ensure that their modules are designed to work together seamlessly
and that the overall system meets the requirements and is easy to understand and maintain.

SOLID

SOLID coding principles are a set of guidelines for writing clean, maintainable, and scalable code.
The SOLID principles are as follows:

•	 Single Responsibility Principle (SRP): This principle states that each class or module should
have only one responsibility or reason to change. This means that a class should do one thing
and do it well. By keeping classes focused on a single responsibility, it becomes easier to test,
maintain, and extend them.

•	 Open-Closed Principle (OCP): This principle states that classes should be open for extension
but closed for modification. This means that you should be able to extend the behavior of a
class without modifying its source code. By using abstractions and interfaces, you can create
flexible and extensible code that can be adapted to new requirements without breaking
existing functionality.

•	 Liskov Substitution Principle (LSP): This principle states that a subclass should be substitutable
for its base class. This means that you should be able to use a subclass wherever its base class is
used without introducing errors or unexpected behavior. By following this principle, you can
create code that is more modular, reusable, and extensible.

•	 Interface Segregation Principle (ISP): This principle states that classes should not be forced
to depend on interfaces they do not use. This means that interfaces should be designed with a
single responsibility and clients should only depend on the interfaces that they need. By following
this principle, you can create code that is more flexible and easier to maintain.

•	 Dependency Inversion Principle (DIP): This principle states that high-level modules should
not depend on low-level modules, but both should depend on abstractions. This means that
the design of the system should be based on abstractions, not concrete implementations. By
using dependency injection, you can create code that is more modular, testable, and extensible.

By following the SOLID principles, C# developers can write code that is more modular, maintainable,
and extensible. These principles can help reduce the complexity of the code and make it easier to add
new features, fix bugs, and refactor the code. The SOLID principles are widely adopted in the software
development industry and are an essential part of creating high-quality software.

Coding Standards and Principles in C#8

Keep It Simple Stupid (KISS)

The KISS coding principle is a problem-solving principle that suggests that simplicity should be a
key goal in software design.

The KISS principle is based on the idea that simple solutions are often easier to understand, maintain,
and modify than complex solutions. It emphasizes the importance of avoiding unnecessary complexity
and keeping code as straightforward as possible.

To apply the KISS principle in C# programming, developers should strive to write code that is easy to
understand and maintain. They should avoid over-engineering solutions and focus on writing code
that meets the requirements in the simplest way possible. This includes using clear and concise variable
names, commenting on code where necessary, and avoiding unnecessary abstractions and design patterns.

By following the KISS principle, C# developers can create more maintainable and efficient code. They
can also reduce the time and effort required for development, testing, and debugging, as simple code
is easier to understand and modify.

However, it is important to note that the KISS principle should not be used as an excuse to write code
that is too simplistic or lacks the necessary features or functionality. C# developers should still ensure
that their code meets the requirements and is flexible enough to accommodate future changes. The
KISS principle should be used as a guideline to help simplify the problem-solving process, rather
than as a strict rule.

You Ain’t Gonna Need It (YAGNI)

The YAGNI coding principle is a software development principle that encourages developers to avoid
adding functionality or code until it is needed.

The YAGNI principle is based on the idea that adding unnecessary code or features can increase the
complexity of the system and make it harder to understand and maintain. It can also lead to wasted
time and effort as features that are never used still require development, testing, and debugging.

To follow the YAGNI principle, C# developers should focus on implementing only the features and
functionality that are required to meet the current requirements. They should avoid adding additional
code or features in anticipation of future requirements, as these requirements may never materialize
or may change significantly over time.

By following the YAGNI principle, C# developers can create more maintainable and efficient code.
They can also reduce the time and effort required for development, testing, and debugging, as they
are only working on the features and functionality that are needed.

However, it is important to note that the YAGNI principle should not be followed blindly. C# developers
should still consider the long-term goals and requirements of the system, and make sure that the code
they write is flexible and scalable enough to accommodate future changes. The YAGNI principle should
be used as a guideline, rather than a hard-and-fast rule.

The need for coding standards, principles, and methodologies 9

Don’t Repeat Yourself (DRY)

The DRY coding principle is a software development principle that aims to reduce duplication of code.
The DRY principle states that every piece of knowledge or logic should have a single, unambiguous,
authoritative representation within a system.

The DRY principle is based on the idea that duplicated code is more difficult to maintain and can lead
to inconsistencies and errors in the system. Duplication of code can also increase the complexity of
the system and make it harder to understand and modify.

To follow the DRY principle, C# developers should strive to identify and eliminate duplication of code.
This can be achieved by creating reusable code components such as functions, classes, or libraries,
and using them wherever possible. Code duplication can also be eliminated by using inheritance and
polymorphism, which allow for code to be shared across different parts of the system.

Following the DRY principle can help C# developers create more maintainable, scalable, and efficient
code. It can also reduce the time and effort required for debugging and fixing errors in the system.
By avoiding duplication of code, C# developers can focus on creating new features and functionality,
rather than re-implementing existing code.

Occam’s razor

The Occam’s razor coding principle is a problem-solving principle that suggests that the simplest
solution is often the best solution.

This principle is based on the idea that unnecessary complexity should be avoided when solving
problems as it can lead to confusion, errors, and inefficiencies. Instead, the simplest solution that
meets the requirements should be chosen.

To apply the Occam’s razor principle in C# programming, developers should strive to write code
that is clear, concise, and easy to understand. They should avoid adding unnecessary complexity or
over-engineering solutions and focus on writing code that meets the requirements in the simplest
way possible.

By following the Occam’s razor principle, C# developers can create more maintainable and efficient
code. They can also reduce the time and effort required for development, testing, and debugging, as
simple code is easier to understand and modify.

However, it is important to note that the Occam’s razor principle should not be used as a justification
for writing code that is too simplistic or lacks the necessary features or functionality. C# developers
should still ensure that their code meets the requirements and is flexible enough to accommodate
future changes. The Occam’s razor principle should be used as a guideline to help simplify the problem-
solving process, rather than as a strict rule.

Coding Standards and Principles in C#10

Coding methodologies

Coding methodologies break down the process of developing software into several predefined phases.
Each phase will have several steps associated with it. Different developers and development teams will
have coding methodologies that they follow. The main aim of coding methodologies is to streamline the
process from the initial concept, through the coding phase, to the deployment and maintenance phases.

Some examples of C# coding methodologies include agile, test-driven development, behavior-driven
development, and domain-driven design. Let’s summarize each of these methodologies.

Agile

The Agile methodology is an iterative and incremental approach to software development that
emphasizes flexibility and collaboration between team members. As a C# software developer, you
can implement the Agile methodology in your development process to deliver high-quality software
products faster and with greater flexibility.

Here are some of the key concepts and principles of the Agile methodology:

•	 Iterative development: In the Agile methodology, development is divided into small, incremental
cycles called iterations. Each iteration typically lasts between 1-4 weeks and involves developing
a working software increment that is then reviewed by the team and stakeholders.

•	 Customer collaboration: The Agile methodology emphasizes close collaboration between the
development team and the customer or end user. This helps ensure that the software meets the
customer’s needs and is delivered on time and within budget.

•	 Self-organizing teams: Agile teams are typically self-organizing, with each team member
taking on a specific role and contributing to the development process. This approach encourages
teamwork and collaboration and enables the team to respond quickly to changing requirements.

•	 Continuous improvement: The Agile methodology places a strong emphasis on continuous
improvement. This means that the team is constantly looking for ways to improve the development
process, including the tools, techniques, and practices they use.

•	 Adaptability: The Agile methodology is designed to be adaptable to changing requirements
and circumstances. This means that the team can quickly respond to changes in the project
scope or requirements and adjust their approach accordingly.

To implement the Agile methodology in your development process, you can start by breaking down the
project into smaller, more manageable tasks and setting up a regular schedule for iterative development.
You can also work closely with the customer or end user to ensure that the software meets their needs
and is delivered on time and within budget.

Overall, the Agile methodology can help you deliver high-quality software products faster and with
greater flexibility, making it a valuable approach for C# software developers.

The need for coding standards, principles, and methodologies 11

Scrum

Scrum is an agile software development methodology that is used to manage and control complex
projects. It is based on an iterative and incremental approach, where the project is broken down into
small, manageable chunks called sprints. Each sprint typically lasts between 2 and 4 weeks and consists
of a series of tasks that need to be completed by the team.

The Scrum methodology is designed to be flexible and adaptable to changing requirements, with a
focus on delivering a high-quality product that meets the needs of the customer. The key roles in the
Scrum methodology are as follows:

•	 Product owner: Responsible for defining the product vision and prioritizing the backlog of
features and requirements

•	 Scrum master: Responsible for facilitating the team and ensuring that they follow the
Scrum methodology

•	 Development team: Responsible for designing, developing, and testing the product

The Scrum methodology also includes several key practices:

•	 Sprint planning: This is where the team decides what work they will complete in the
upcoming sprint

•	 Daily Scrum: A short meeting where the team discusses progress, obstacles, and plans for the day

•	 Sprint review: A meeting where the team demonstrates the completed work to stakeholders
and receives feedback

•	 Sprint retrospective: A meeting where the team reflects on the previous sprint and identifies
areas for improvement

The Scrum methodology is often used in software development projects but can also be applied to other
types of projects. Its emphasis on collaboration, communication, and continuous improvement makes
it a popular choice for teams looking to deliver high-quality products in a timely and efficient manner.

Kanban

Kanban is a popular software development methodology that emphasizes continuous delivery, flexibility,
and collaboration. It originated in Japanese manufacturing but has since been adapted to fit the needs
of software development teams.

At its core, Kanban is a visual system for managing work. It is based on the concept of a “kanban
board,” which is essentially a visual representation of the work that needs to be done, the work that is
currently in progress, and the work that has been completed. The board is typically divided into columns
that represent different stages of the development process, such as “to-do,” “in progress,” and “done.”

Coding Standards and Principles in C#12

The Kanban methodology emphasizes a few key principles:

•	 Visualize the workflow: The kanban board provides a visual representation of the work that needs
to be done, making it easier for team members to understand what needs to be accomplished
and what stage each task is at.

•	 Limit work in progress: Kanban emphasizes limiting the amount of work that is in progress
at any one time. This helps prevent bottlenecks and ensures that team members can focus on
their current tasks.

•	 Manage the flow: By visualizing the workflow and limiting work in progress, teams can more easily
manage the flow of work and ensure that tasks are completed in a timely and efficient manner.

•	 Make process policies explicit: Kanban encourages teams to make their process policies explicit
and to continually evaluate and improve those policies as needed.

•	 Implement feedback loops: Finally, Kanban emphasizes the importance of implementing feedback
loops to help teams continually improve their processes and deliver better results over time.

Overall, the Kanban methodology is a flexible and adaptable approach to software development that
emphasizes collaboration, continuous delivery, and process improvement. It can be an effective way
to manage complex development projects and ensure that teams can work efficiently and effectively.

Lean

Lean software development is a methodology that draws on principles and practices from the Lean
manufacturing philosophy developed by Toyota. It focuses on maximizing value while minimizing
waste, and it emphasizes collaboration, continuous improvement, and customer focus.

At its core, Lean software development is based on seven principles:

•	 Eliminate waste: Lean emphasizes the importance of identifying and eliminating waste in
the development process. This includes things such as unnecessary features, defects, delays,
and overproduction.

•	 Amplify learning: The Lean methodology encourages teams to continuously learn from their
work and use that learning to improve their processes and outcomes.

•	 Decide as late as possible: The Lean approach emphasizes making decisions as late in the
development process as possible to gather more information and make better-informed decisions.

•	 Deliver as fast as possible: Lean encourages teams to deliver work as quickly as possible to get
feedback from users and customers and incorporate that feedback into the development process.

•	 Empower the team: Lean teams are empowered to make decisions and take ownership of the
development process, rather than being micromanaged by a hierarchy of managers.

The need for coding standards, principles, and methodologies 13

•	 Build quality in: The Lean methodology emphasizes the importance of building quality into
the development process from the beginning, rather than relying on testing and bug-fixing
later in the process.

•	 See the whole: Finally, Lean emphasizes the importance of seeing the big picture and understanding
how all of the different parts of the development process fit together.

Overall, the Lean software development methodology focuses on delivering value to customers as
quickly and efficiently as possible, while minimizing waste and continuously improving processes.
It is a collaborative and customer-focused approach that can help teams deliver better outcomes and
more successful products.

Crystal

The Crystal methodology is a family of agile software development methodologies that vary in size,
complexity, and criticality. It was developed by Alistair Cockburn in the late 1990s and is based on
the principles of agility, teamwork, and communication.

The Crystal methodology places a strong emphasis on the human aspect of software development,
with an emphasis on collaboration and communication between team members. It is designed to be
flexible and adaptable, with teams encouraged to tailor the methodology so that it meets the specific
needs of their project.

The Crystal methodology is based on several core principles, including the following:

•	 Individuals and interactions over processes and tools: The focus is on communication and
collaboration between team members, rather than relying solely on processes and tools

•	 Working software over comprehensive documentation: The goal is to develop working software
that meets user needs, rather than spending excessive amounts of time on documentation

•	 Customer collaboration over contract negotiation: The customer is considered an active
participant in the development process, with their needs and expectations being taken into
account throughout the project

•	 Responding to change over following a plan: The methodology is designed to be flexible
and adaptable, with changes in requirements and priorities being accommodated throughout
the project

The Crystal methodology is based on several core practices, including these:

•	 Teamwork: The methodology emphasizes the importance of teamwork and collaboration, with
team members encouraged to work together to achieve common goals

•	 Incremental delivery: The methodology emphasizes the importance of delivering software in
small, incremental releases

Coding Standards and Principles in C#14

•	 Continuous integration: The methodology encourages frequent integration of code to minimize
conflicts and ensure that the software remains stable and functional

•	 Reflective improvement: The methodology encourages team members to reflect on their
performance and make continuous improvements to their processes and practices

The Crystal methodology is well suited for small to medium-sized projects with changing requirements
and high levels of complexity. It is particularly useful in situations where there is a need for flexibility,
adaptability, and close collaboration between team members. However, the Crystal methodology
may not be suitable for large, complex projects with well-defined requirements and limited flexibility.

Six Sigma

Six Sigma is a data-driven methodology for process improvement that originated in the manufacturing
industry and has been adapted for software development. The goal of Six Sigma is to reduce variability
and defects in a process by identifying and eliminating the root causes of errors and improving quality.

The Six Sigma methodology follows a structured approach known as DMAIC, which stands for Define,
Measure, Analyze, Improve, and Control. Here is a brief overview of each phase:

•	 Define: In the Define phase, the team defines the problem they are trying to solve and establishes
goals and objectives for the project. This involves gathering data and conducting a thorough
analysis of the current process.

•	 Measure: In the Measure phase, the team establishes a baseline for the current process and
measures key performance indicators (KPIs) to identify areas of improvement. This involves
gathering data, analyzing it, and creating a measurement plan.

•	 Analyze: In the Analyze phase, the team analyzes the data collected in the previous phase to
identify the root causes of defects and variability in the process. This may involve using statistical
tools and techniques to identify patterns and correlations in the data.

•	 Improve: In the Improve phase, the team develops and implements solutions to address the
root causes of defects and variability identified in the Analyze phase. This may involve testing
and validating the proposed solutions to ensure they are effective.

•	 Control: In the Control phase, the team establishes control plans and processes to ensure that
the improvements made in the Improve phase are sustained over time. This involves developing
monitoring and feedback mechanisms to ensure that the process remains stable and efficient.

Overall, the Six Sigma methodology focuses on using data and statistical analysis to identify and
eliminate the root causes of defects and variability in a process. By following the DMAIC process,
software development teams can identify areas of improvement, develop effective solutions, and
ensure that the improvements are sustained over time. This can lead to improved quality, increased
efficiency, and greater customer satisfaction.

The need for coding standards, principles, and methodologies 15

Extreme Programming (XP)

Extreme Programming (XP) is an Agile software development methodology that emphasizes
continuous testing, pair programming, and frequent releases. The goal of XP is to enable faster
and more efficient software development through a series of practices that promote collaboration,
communication, and feedback.

At its core, XP is based on five key values:

•	 Communication: XP emphasizes communication between team members, with a focus on
face-to-face communication over written documentation

•	 Simplicity: XP emphasizes keeping things simple and avoiding unnecessary complexity

•	 Feedback: XP emphasizes the importance of feedback throughout the software development
process, including frequent testing and customer feedback

•	 Courage: XP emphasizes the importance of taking risks and making bold decisions, with a
focus on continuous improvement and experimentation

•	 Respect: XP emphasizes respect for all team members, with a focus on creating a supportive
and collaborative environment

XP also includes several specific practices designed to support these values, including the following:

•	 Test-driven development (TDD): A practice in which developers write automated tests for
their code before writing the code itself

•	 Pair programming: A practice in which two developers work together at a single computer,
with one person writing code and the other providing feedback and suggestions

•	 Continuous integration: A practice in which code changes are integrated into a shared
repository and tested automatically

•	 Refactoring: A practice in which developers improve the design of existing code to make it
more maintainable and easier to understand

•	 Small releases: A practice in which software is released in small, frequent increments, rather
than in large, infrequent releases

Overall, the XP methodology is focused on enabling faster, more efficient, and higher-quality software
development through a series of practices that promote collaboration, communication, and feedback.
By emphasizing simplicity, courage, and respect, XP can help teams build better software products
while also improving the development process itself.

Coding Standards and Principles in C#16

DevOps

DevOps is a software development methodology that emphasizes collaboration between development
and operations teams to streamline the software development and deployment process. The goal of
DevOps is to enable faster and more frequent releases, higher-quality software, and greater efficiency
and agility in the software development process.

At its core, DevOps is based on three key principles:

•	 Culture: DevOps emphasizes a culture of collaboration, trust, and continuous learning and
improvement. This involves breaking down silos between development and operations teams
and promoting cross-functional collaboration.

•	 Automation: DevOps emphasizes the use of automation tools and technologies to streamline the
software development and deployment process. This includes tools for continuous integration,
continuous delivery, and continuous testing, as well as infrastructure automation tools such as
configuration management and Infrastructure as Code (IaC).

•	 Measurement: DevOps emphasizes the use of metrics and data to measure the performance
of the software development and deployment process and identify areas for improvement.
This involves establishing KPIs and using monitoring and analytics tools to track progress
and identify trends.

Overall, the DevOps methodology focuses on enabling faster, more frequent, and higher-quality
software releases through collaboration, automation, and measurement. By breaking down silos
between development and operations teams and promoting a culture of collaboration and continuous
improvement, DevOps can help organizations deliver software more efficiently and effectively, while
also improving the quality and reliability of their software products.

Feature-driven development (FDD)

FDD is a software development methodology that emphasizes the iterative and incremental delivery
of features. It is a lightweight, client-centric, and scalable agile approach that was first introduced by
Jeff De Luca and Peter Coad in the late 1990s.

FDD is based on a five-step process:

1.	 Develop the overall model: The first step involves developing an overall model of the project.
This includes identifying the features, developing a domain model, and creating a feature list.

2.	 Build a feature list: In this step, the features identified in the first step are broken down into
smaller, more manageable tasks. These tasks are then prioritized based on their importance
to the client.

3.	 Plan by feature: The third step involves planning the development of each feature. This includes
creating a design for each feature, estimating the time required to develop it, and identifying
any dependencies.

The need for coding standards, principles, and methodologies 17

4.	 Design by feature: In this step, the design for each feature is created. This includes identifying
the classes and objects required, creating sequence diagrams, and identifying any design
patterns that may be required.

5.	 Build by feature: The final step involves building the features. This includes writing the code,
testing the feature, and integrating it with the rest of the system.

FDD places a strong emphasis on teamwork and collaboration, with each team member assigned a
specific role. These roles include a Chief Architect, Development Manager, Chief Programmer, Domain
Expert, and Feature Team Members.

One of the key benefits of FDD is its focus on delivering features in small, incremental releases. This
allows clients to see progress early on in the development process and provide feedback that can be
incorporated into future releases.

FDD is well suited for large, complex projects that require a structured approach to development. However,
it may not be suitable for smaller, less complex projects where a more flexible approach may be required.

Test-driven development (TDD)

TDD is a software development methodology that focuses on writing automated tests before writing
the actual code. As a C# software developer, you can use TDD to create high-quality, bug-free software
that meets the requirements of the client.

Here are the basic steps of TDD:

1.	 Write a test: The first step in TDD is to write a test that defines the desired behavior of the
code. The test should be written in a testing framework such as NUnit, xUnit, or MSTest. The
test should initially fail since there is no code to satisfy the test.

2.	 Write the minimum code: The next step is to write the minimum code required to pass the
test. This code should be written in small increments and should only include the necessary
functionality to pass the test.

3.	 Refactor: Once the test passes, you can refactor the code to improve its design and structure.
Refactoring can help simplify the code, remove duplication, and improve performance.

4.	 Repeat: Finally, you can write another test and repeat the process of writing the minimum
code required to pass the test, refactoring, and writing additional tests.

Here are the benefits of TDD:

•	 Helps ensure that the code meets the requirements: By writing tests before writing code,
TDD ensures that the code satisfies the requirements of the client.

•	 Facilitates continuous integration and delivery: Since TDD produces a suite of automated
tests, it facilitates continuous integration and delivery. This helps reduce the risk of introducing
bugs into the code base and helps ensure that the software is always in a releasable state.

Coding Standards and Principles in C#18

•	 Reduces debugging time: By catching bugs early in the development process, TDD helps
reduce debugging time and costs.

•	 Improves code quality: By emphasizing writing clean, testable code, TDD helps improve code
quality and maintainability.

Overall, TDD is a valuable methodology for C# software developers who want to create high-quality,
bug-free software that meets the requirements of the client.

Behavior-driven development (BDD)

BDD is a software development methodology that emphasizes collaboration between developers,
testers, and business stakeholders to ensure that software meets the requirements of the business. As
a C# software developer, you can use BDD to create software that is aligned with the business needs.

Here are the basic steps of BDD:

1.	 Define business requirements: The first step in BDD is to define the business requirements for
the software application. This involves working closely with business stakeholders to understand
their needs and requirements.

2.	 Define behaviors: Once the business requirements have been defined, the next step is to define
the behaviors of the software application. Behaviors are defined using a structured language
such as Gherkin, which allows business stakeholders, developers, and testers to collaborate on
a shared understanding of the requirements.

3.	 Create automated tests: Once the behaviors have been defined, the next step is to create
automated tests that validate those behaviors. These tests are created using a testing framework
such as SpecFlow, which integrates with C# and allows developers to write tests in a readable
and understandable way.

4.	 Write the code: Once the tests have been created, the next step is to write the code that
implements the behaviors. This code should be written in C# and should focus on satisfying
the business requirements and passing the automated tests.

5.	 Refactor and repeat: Once the code has been written and tested, the next step is to refactor
the code to improve its design and structure. This process should be repeated as necessary
to ensure that the software meets the business requirements and passes the automated tests.

Here are the benefits of BDD:

•	 Improved collaboration: BDD emphasizes collaboration between developers, testers, and
business stakeholders, which can help improve the quality of the software application and
reduce development time and costs.

•	 Increased visibility: BDD provides increased visibility into the requirements and behaviors of
the software application, which can help ensure that the software meets the needs of the business.

The need for coding standards, principles, and methodologies 19

•	 Reduced bugs: BDD helps catch bugs early in the development process, which can help reduce
debugging time and costs.

•	 A better understanding of the requirements: BDD helps ensure that developers have a clear
understanding of the requirements of the business, which can help reduce the risk of building
software that does not meet the needs of the business.

Overall, BDD is a valuable methodology for C# software developers who want to create software that
meets the requirements of the business and is aligned with the needs of the stakeholders. By defining
behaviors using a structured language and creating automated tests, developers can ensure that the
software meets the business requirements and passes the tests.

Domain-driven design (DDD)

DDD is a software development methodology that focuses on understanding the domain of the
software application and building a model of that domain that can be used to guide the development
process. As a C# software developer, you can use DDD to create software that is closely aligned with
the needs of the business or organization.

Here are the basic steps of DDD:

1.	 Define the domain: The first step in DDD is to define the domain of the software application.
This involves working closely with the business or organization to understand its needs,
requirements, and processes.

2.	 Build the domain model: Once the domain has been defined, the next step is to build a model
of that domain that can be used to guide the development process. The domain model is a
representation of the key concepts, entities, and relationships in the domain.

3.	 Refine the domain model: As development progresses, the domain model may need to be
refined and updated based on new information or changes in the business or organization.

4.	 Build the application: Once the domain model has been established, the next step is to build the
application using the model as a guide. This involves writing code in C# and using frameworks
and libraries such as Entity Framework, ASP.NET, and others.

5.	 Test and refine: Once the application has been built, it should be thoroughly tested to ensure that
it meets the requirements of the business or organization. The domain model and application
code should be refined and updated as necessary based on testing feedback.

Here are the benefits of DDD:

•	 Better alignment with business needs: DDD helps ensure that the software application is
closely aligned with the needs of the business or organization. By building a model of the
domain, developers can better understand the requirements and processes of the business.

•	 Improved software quality: By focusing on the domain and building a model of that domain,
DDD can help improve the quality of the software application.

Coding Standards and Principles in C#20

•	 Reduced development time and cost: By better understanding the domain and building a
model of that domain, DDD can help reduce development time and costs.

•	 Facilitates teamwork and collaboration: DDD emphasizes teamwork and collaboration between
developers, business analysts, and other stakeholders, which can help improve the quality of
the software application and reduce development time and costs.

Overall, DDD is a valuable methodology for C# software developers who want to create software that
is closely aligned with the needs of the business or organization. By building a model of the domain,
developers can better understand the requirements and processes of the business and build high-
quality software that meets those needs.

Rapid Application Development (RAD)

Rapid Application Development (RAD) is a software development methodology that emphasizes
rapid prototyping and iterative development. It was first introduced in the 1980s as a response to
the traditional waterfall model, which was seen as too slow and inflexible for the rapidly changing
business environment.

RAD is based on four key principles:

•	 Active user involvement: RAD emphasizes the importance of involving end users in the
development process. This helps ensure that the system being developed meets their needs
and expectations.

•	 Iterative development: RAD breaks down the development process into a series of iterative
cycles. Each cycle involves building a small part of the system and then getting feedback from
users before moving on to the next cycle.

•	 Prototyping: RAD uses prototyping as a means of quickly developing and testing system
features. Prototypes are used to refine requirements and ensure that the system being developed
meets user needs.

•	 Timeboxing: RAD places a strong emphasis on meeting deadlines. The development process
is divided into a series of timeboxes, with each timebox having a specific set of deliverables
and a fixed deadline.

RAD follows a five-step process:

1.	 Requirements planning: The first step involves identifying user requirements and defining
the scope of the project.

2.	 User design: In this step, users and developers work together to create a prototype of the system.
This prototype is used to refine requirements and ensure that the system meets user needs.

3.	 Construction: The construction phase involves developing the system based on the prototype
and feedback from users.

Summary 21

4.	 Testing: In this step, the system is tested to ensure that it meets user requirements and is free
of defects.

5.	 Deployment: The final step involves deploying the system and making it available to end users.

RAD is well suited for projects with tight deadlines and a need for rapid development. It is particularly
useful in situations where user requirements are unclear or may change frequently. However, RAD may
not be suitable for large, complex projects that require a more structured approach to development.

The Spiral Model

The Spiral Model is a software development methodology that combines elements of both iterative and
waterfall models. It was first proposed by Barry Boehm in 1988 and is based on the idea of continuous
risk management throughout the software development process.

The Spiral Model follows a series of iterative cycles, each of which involves four main phases:

•	 Planning: In the planning phase, the objectives of the iteration are defined, along with the
resources, constraints, and risks associated with the development process. This phase also
involves defining the system requirements and determining the feasibility of the project.

•	 Risk analysis: In the risk analysis phase, potential risks and uncertainties are identified, along
with their impact on the project. Risk analysis is a continuous process throughout the software
development life cycle, with risks being re-evaluated at each iteration.

•	 Engineering: In the engineering phase, the software is designed, coded, and tested. This phase
also involves verifying and validating the software to ensure that it meets the requirements
and standards of the project.

•	 Evaluation: In the evaluation phase, the software is evaluated by stakeholders to determine
whether it meets their needs and expectations. Feedback from stakeholders is then used to
refine the objectives and requirements of the next iteration.

The Spiral Model places a strong emphasis on risk management, with risks being identified and
addressed at each stage of the development process. This allows for early detection and resolution of
potential issues, which can help minimize project delays and costs.

The Spiral Model is well suited for large, complex projects with changing requirements and high levels
of risk. It is particularly useful in situations where there is a need for constant feedback and adaptation
throughout the software development process. However, the Spiral Model may not be suitable for
small, simple projects with well-defined requirements and limited risks.

Summary
In this chapter, you were introduced to good code and bad code and, hopefully, you now understand
why good code matters.

Coding Standards and Principles in C#22

In software development, bad code refers to poorly written and structured code that is difficult to
maintain, understand, and modify. In contrast, good code is well-written, structured, and maintainable,
making it easier to understand and modify over time. To ensure that code is of high quality, software
development teams often use coding standards, which define a set of rules and guidelines for writing code.

In addition to coding standards, software development also relies on principles and methodologies
to guide the development process. Principles such as SOLID and DRY are used to ensure that code
is maintainable and scalable over time.

Different software development methodologies such as Agile, Scrum, Waterfall, Spiral, RAD, and
FDD offer different approaches to the software development process, each with its strengths and
weaknesses. Agile methodologies, for example, prioritize flexibility and collaboration, while Waterfall
methodologies prioritize strict planning and a linear development process.

In summary, writing good code is essential for creating maintainable and scalable software applications.
Software development teams use coding standards, principles, and methodologies to ensure that code
is of high quality and meets the needs of the project. By adhering to these standards and following
proven methodologies, software developers can create software applications that are reliable, efficient,
and easy to maintain over time.

In the next chapter, we will be looking at peer code reviews. They can be unpleasant at times, but peer
code reviews help keep programmers in check by making sure they are adhering to the company’s
coding standards and guidelines.

Questions
1.	 What is bad code?

2.	 What is good code?

3.	 What are some common signs of bad code?

4.	 What are some common coding standards?

5.	 What are some coding principles?

6.	 What is agile software development?

7.	 What is test-driven development (TDD)?

8.	 What is refactoring?

Further reading 23

Further reading
Here is a list of books on coding standards, principles, and methodologies, along with summaries of each:

•	 Clean Code: A Handbook of Agile Software Craftsmanship, by Robert C. Martin: This book
provides a comprehensive guide to writing clean, maintainable code using best practices and
principles of software craftsmanship.

•	 Code Complete: A Practical Handbook of Software Construction, by Steve McConnell: This
book covers software development best practices and techniques, including code construction,
debugging, testing, and maintenance.

•	 The Pragmatic Programmer: From Journeyman to Master, by Andrew Hunt and David Thomas:
This book offers practical advice for improving code quality, productivity, and professionalism,
and covers topics such as code organization, testing, and refactoring.

•	 Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides: This book covers design patterns, which are reusable
solutions to common programming problems.

•	 Refactoring: Improving the Design of Existing Code, by Martin Fowler: This book provides a
guide to refactoring, which is the process of improving the design of existing code without
changing its external behavior.

•	 Domain-Driven Design: Tackling Complexity in the Heart of Software, by Eric Evans: This book
covers DDD, which is an approach to software development that emphasizes understanding
and modeling the domain of the problem being solved.

•	 Test-Driven Development: By Example, by Kent Beck: This book covers TDD, which is a software
development approach that involves writing tests before writing the code to be tested.

•	 Agile Estimating and Planning, by Mike Cohn: This book covers agile project management,
including techniques for estimating and planning software development projects.

•	 Extreme Programming Explained: Embrace Change, by Kent Beck: This book covers extreme
programming, which is an agile software development methodology that emphasizes continuous
improvement, customer involvement, and rapid feedback.

•	 Patterns of Enterprise Application Architecture, by Martin Fowler: This book covers patterns
for designing and building enterprise applications, including patterns for data access, business
logic, and user interface design.

•	 Adaptive Code: Agile coding with design patterns and SOLID principles, Second Edition, by Gary
McLean Hall: This book provides practical guidance on how to write adaptive code using agile
development methodologies, design patterns, and SOLID principles. It covers topics such as
TDD, refactoring, and continuous integration and delivery.

Coding Standards and Principles in C#24

•	 Hands-On Design Patterns with C# and .NET Core, by Jeffrey Chilberto and Gaurav Aroraa:
This book provides a hands-on approach to learning design patterns using C# and .NET Core.
It covers common design patterns such as creational, structural, and behavioral patterns, and
provides practical examples and code snippets to demonstrate their use.

•	 Building Maintainable Software, C# Edition, by Rob van der Leek, Pascal van Eck, Gijs Wijnholds,
Sylvan Rigal, and Joost Visser: This book provides guidance on how to write maintainable software
using best practices and design patterns. It covers topics such as code quality, refactoring, and
automated testing, and provides practical examples and case studies to demonstrate its principles.

These books are widely regarded as some of the best resources on coding standards, principles, and
methodologies, and cover a wide range of topics and approaches to software development.

2
Code Review – Process

and Importance

The primary motivation behind any code review is to improve the overall quality of the code. Code
quality is very important. This almost goes without saying, especially if your code is part of a team project
or is accessible to others, such as open-source developers and customers through escrow agreements.

If every developer were free to code as they pleased, you would end up with the same kind of code
written in so many ways, and ultimately, the code would become an unwieldy mess. That is why it is
important to have a coding standards policy that outlines the company’s coding practices and code
review procedures that are to be followed.

When code reviews are carried out, colleagues will review the code of other colleagues. Colleagues
will understand that it is only human to make mistakes. They will check the code for mistakes, such
as code that breaks the company’s code of coding conduct, and any code that, while syntactically
correct, can be improved upon to make it more readable, more maintainable, or more performant.

Therefore, in this chapter, we will cover the following topics to understand the code review process
in detail:

•	 A brief introduction to GitHub

•	 The code review process

•	 Preparing code for review

•	 Leading a code review

•	 Knowing what to review

•	 Knowing when to send for code review

•	 Providing and responding to review feedback

Code Review – Process and Importance26

Note
For the Preparing code for review and Knowing when to send code for review sections, we will be
talking from the point of view of the programmer. For the Leading a code review and Knowing
what to review sections, we will be talking from the point of view of the code reviewer. However,
concerning the Providing and responding to review feedback section, we will cover the viewpoints
of both the programmer and the code reviewer.

The learning objectives for this chapter are for you to be able to do the following:

•	 Understand GitHub and its potential use in the code review process

•	 Understand code reviews and why they are good

•	 Partake in code reviews

•	 Provide constructive criticism

•	 Respond positively to constructive criticism

Before we dive deep into these topics, let’s understand the general code review process.

A brief introduction to GitHub
This section covers a brief introduction to programmers and developers who are new to GitHub and
never used it since this chapter focuses on the use of GitHub for performing code reviews.

GitHub is a powerful platform that revolutionizes the way developers collaborate on projects. Whether
you’re a seasoned programmer or just starting your coding journey, GitHub provides a centralized
hub for version control, collaboration, and code sharing. This introduction aims to guide beginners
through the fundamentals of GitHub and provide resources to help you embark on your journey to
becoming a proficient GitHub user.

What is GitHub?

GitHub is a web-based platform built around Git, a distributed version control system. In simpler
terms, it helps you manage and track changes to your code. GitHub extends Git’s functionality by
providing a user-friendly interface and collaborative features, making it an essential tool for individual
developers and large-scale teams alike.

Here are its key concepts:

•	 Repositories: These are containers for your project. A repository, or “repo,” holds all the files,
history, and documentation related to your project.

•	 Commits: Each change you make to your project is captured in a commit. Commits help you
track the progress of your project and can be accompanied by messages to describe the changes.

A brief introduction to GitHub 27

•	 Branches: Branches allow you to work on different versions of your project simultaneously. You
can experiment with new features or fix bugs without affecting the main project until you’re
ready to merge your changes.

•	 Pull Requests: When you’ve made changes in a branch and are ready to merge them into the main
project, you create a pull request. This allows others to review your changes before they are incorporated.

GitHub’s use within the code review process

GitHub plays a crucial role in the code review process, facilitating collaboration and maintaining code
quality within a development team. Here’s an overview of how GitHub is used in the code review process:

1.	 Pull requests (PRs):

	� Developers typically create a branch for a new feature or bug fix. Once the changes have
been implemented, they initiate a pull request.

	� A pull request is a proposal to merge the changes from one branch into another (often from
a feature branch into the main branch).

	� PRs encapsulate the changes made, providing an overview of the additions, modifications,
and deletions.

2.	 Reviewers:

	� In a collaborative environment, code reviews involve one or more reviewers who examine
the changes proposed in a pull request.

	� Reviewers may include peers, team leads, or anyone with expertise in the code base.
Their role is to ensure code quality, adherence to coding standards, and the correctness of
the implementation.

3.	 Discussion and feedback:

	� GitHub’s interface allows reviewers to comment on specific lines of code. This feature facilitates
detailed discussions about the proposed changes.

	� Reviewers can suggest improvements, request clarifications, or point out potential issues
directly within the context of the code.

4.	 Continuous integration (CI):

	� Many development teams integrate CI tools (such as Jenkins, Travis CI, or GitHub Actions)
with GitHub.

	� CI automatically builds and tests code changes whenever a pull request is opened or updated.
This ensures that proposed changes don’t break existing functionality and helps maintain
a stable code base.

Code Review – Process and Importance28

5.	 Status checks:

	� GitHub allows integration with various status checks, including automated tests, code style
checks, and other custom checks defined by the development team.

	� Pull requests can only be merged if all defined status checks pass. This ensures that the
proposed changes meet the project’s quality standards.

6.	 Iterative improvements:

	� Code reviews often involve multiple iterations. Developers can make additional commits to
the same branch in response to feedback and then update the pull request.

	� The iterative process continues until the changes are approved and meet the team’s standards.

7.	 Merge and deployment:

	� Once the code review process is complete, and the changes are approved, the pull request
can be merged into the target branch (for example, main or master)

	� Merging triggers further actions, such as deployment to staging or production environments,
depending on the team’s release process

8.	 History and documentation:

	� GitHub maintains a detailed history of all changes made through pull requests. This historical
record is invaluable for understanding the evolution of the code base and tracking who
contributed to specific features or fixes.

By leveraging GitHub’s features for pull requests, code review, and integrations with CI tools, development
teams can streamline their workflows, catch potential issues early in the development process, and
maintain high-quality code bases. This collaborative approach promotes knowledge sharing, code
consistency, and overall team efficiency.

Resources for learning

To learn more about using GitHub, coding best practices, and using software methodologies to manage
your projects, you can use the following resources:

•	 GitHub Learning Lab: GitHub provides an interactive learning experience through Learning
Lab (https://github.com/apps/github-learning-lab). This platform offers
hands-on courses on Git, GitHub, and other related topics.

•	 GitHub Guides: GitHub Guides (https://guides.github.com/) covers a wide range of
topics, from the basics of GitHub to more advanced workflows. The guides are well-structured
and easy to follow.

https://github.com/apps/github-learning-lab
https://guides.github.com/

The code review process 29

•	 YouTube tutorials: Numerous tutorials on YouTube cater to GitHub beginners. Channels such
as The Net Ninja and Traversy Media provide step-by-step guides for using GitHub.

•	 Documentation: GitHub’s official documentation (https://docs.github.com/en) is
a valuable resource. It covers everything from the basics to advanced topics, providing in-depth
explanations and examples.

•	 Interactive Git tutorial: If you’re new to Git, try the tryGit (https://try.github.io/) interactive
tutorial. It’s a hands-on way to learn the basics of Git right in your browser.

•	 C# coding standards and best practices: Dofactory has a good web page (https://
dofactory.com/csharp-coding-standards) that provides C# coding standards
and best practices with C# code.

•	 C# design patterns: Dofactory provides an excellent online resource (https://dofactory.
com/net/design-patterns) that covers the gang-of-four (GoF) software design patterns
with detailed explanations, UML diagrams, and source code.

•	 Agile software development methodologies and how to apply them: The Code Project article
at https://www.codeproject.com/articles/604417/agile-software-
development-methodologies-and-how-t takes you on a journey from the Waterfall
method through to the modern Scrum methodology and is an interesting article on choosing
the right project management methodology for managing your software projects.

•	 Code Project: Code Project (https://www.codeproject.com/) is a good place to search
for articles, tutorials, and code examples, as well as search for software implementation guidance
on topics such as YAGNI, DRY, SOLID, and the software development life cycle (SDLC).

GitHub is an indispensable tool for modern software development, fostering collaboration, version
control, and efficient project management. By familiarizing yourself with its key concepts and exploring
the recommended resources, you’ll be well on your way to mastering GitHub and enhancing your
development workflow.

The code review process
The normal procedure for carrying out a code review is to make sure your code compiles and meets
the requirements set. It should also pass all unit tests and end-to-end tests. Once you are confident that
you can compile, test, and run your code successfully, it is checked into the current working branch.
Once checked in, you must issue a pull request.

A peer reviewer will then review your code and share comments and feedback. If your code passes the
code review, your code review is completed, and you can merge your working branch into the main
trunk. Otherwise, the peer review will be rejected, and you will be required to review your work and
address the issues raised in the comments provided by your reviewer.

https://docs.github.com/en
https://dofactory.com/csharp-coding-standards
https://dofactory.com/csharp-coding-standards
https://dofactory.com/net/design-patterns
https://dofactory.com/net/design-patterns
https://www.codeproject.com/articles/604417/agile-software-development-methodologies-and-how-t
https://www.codeproject.com/articles/604417/agile-software-development-methodologies-and-how-t
https://www.codeproject.com/

Code Review – Process and Importance30

The following diagram shows the peer code review process:

Figure 2.1: The code review process

In the following sections, you are going to read about the code review process in detail. We’ll start by
looking at preparing code for review.

Preparing code for review
Preparing for a code review can be a royal pain at times, but it does work for better overall code that
is easy to read and maintain. It is a worthwhile practice that teams of developers should carry out as
a standard coding procedure. This is an important step in the code review process as perfecting this
step can save you considerable time and energy in performing the review.

Note
When working on a piece of code, you can create a draft PR. Your colleagues can then review
the code without having to approve it. This is a good way to receive early feedback as you
progress through the development or maintenance of the code. If your coding practices are in
the process of being adopted, it is a good way to ensure those new practices are being followed.
Once your work is ready for final submission and approval, you can publish your draft pull
request. You can learn more about draft PRs on the GitHub website: https://github.
blog/2019-02-14-introducing-draft-pull-requests/.

https://github.blog/2019-02-14-introducing-draft-pull-requests/
https://github.blog/2019-02-14-introducing-draft-pull-requests/

Preparing code for review 31

Here are some standard points to keep in mind when preparing your code for review:

•	 Always keep the code review in mind: When beginning any programming, you should have
the code review in mind. So, keep your code small. If possible, limit your code to one feature,
and always follow the coding standards.

•	 Remember YAGNI: As you code, make sure to only add code that is necessary to meet the
requirement or feature you are working on. If you don’t need it yet, then don’t code it. Only
add code when it is needed and not before.

•	 Check for duplicate code: If your code must be object-oriented and be DRY and SOLID, then
review your code to see whether it contains any procedural or duplicate code. Should it do so,
take the time to refactor it so that it is object-oriented, DRY, and SOLID.

•	 Use static analyzers: Static code analyzers that have been configured to enforce your company’s
best practices will check your code and highlight any issues that are encountered. Make sure that
you do not ignore information and warnings. These could cause you issues further down the line.

•	 Make sure that all your tests pass, even if your code builds: If your code builds but you have
failing tests, then deal immediately with what’s causing those tests to fail. Then, when the tests
pass as expected, you can move on. It is important to make sure that all unit tests pass and
that end-to-end testing passes all tests. It is important that all testing is complete and gets the
green light since releasing code that works but was a test fail could result in some very unhappy
customers when the code goes to production.

Note
Most importantly, only check your code when you are confident that your code satisfies business
requirements, adheres to coding standards, and passes all tests. If you check your code as part of
a CI pipeline, and your code fails the build, then you will need to address the areas of concern
raised by the CI pipeline. When you can check in your code and the CI pipeline gives the green
light, then you can issue a pull request.

If you’re new to software development and may not know what CI/CD pipelines are, we will briefly
describe them before we go any further.

CI, continuous delivery (CD), and continuous deployment (CD) are three software development practices
that focus on improving the speed, quality, and reliability of software development processes. While these
terms are sometimes used interchangeably, they represent different stages of a software delivery pipeline:

•	 Continuous integration (CI): CI is the practice of frequently merging code changes from
developers into a shared repository, followed by building and testing the code automatically.
The goal of CI is to identify and fix issues as early as possible in the development process to
prevent the accumulation of bugs and technical debt. With CI, developers can integrate their
code changes into a shared repository multiple times a day, ensuring that the code is always
in a releasable state.

Code Review – Process and Importance32

•	 Continuous delivery (CD): Continuous delivery is an extension of CI that focuses on automating
the release of software to production. It is the practice of always keeping the code base in a
releasable state and deploying it to production frequently, usually via an automated pipeline.
With continuous delivery, developers can continuously deliver new features, bug fixes, and
improvements to users in a fast and efficient manner.

•	 Continuous deployment (CD): Continuous deployment is the most advanced stage of the
software delivery pipeline and is where every change that passes through CI/CD is automatically
deployed to production without any manual intervention. This process is only suitable for
organizations that have a high degree of automation, test coverage, and confidence in their
code base. Continuous deployment enables organizations to release features and updates to
users in real-time, with little to no downtime.

In summary, CI ensures that the code base is always working, continuous delivery automates the
release process, and continuous deployment takes automation one step further by deploying code
changes to production automatically.

Leading a code review
When leading code reviews, it is important to have the right people present. The people who will attend
the peer code review will be agreed upon with the project manager. The programmer(s) responsible
for submitting the code for review will be present at the code review unless they work remotely. In the
case of remote working, the reviewer will review the code and either accept the pull request, decline
the pull request, or send the developer some questions to be answered before taking any further action.

A suitable lead for a code review should possess the following skills and knowledge:

•	 Be a technical authority: The person leading the code review should be a technical authority who
understands the company’s coding guidelines and software development methodologies. It is also
important that they have a good overall understanding of the software under review. The person
doing the code review should also be a master in the technology in which the code is written.

•	 Have good soft skills: As the leader of the code review, the person must be a warm and
encouraging individual who can provide constructive feedback and not be overly critical. The
person reviewing the programmer’s code must have good soft skills so that there is no conflict
between the reviewer and the person whose code is being reviewed.

In my experience, peer code reviews are always carried out on pull requests in the source control tool
being used by the team. A programmer will submit the code to source control and then issue a pull
request. The peer code reviewer will then review the code in the pull request. Constructive feedback
will be provided in the form of comments that will be attached to the pull request. If there are problems
with the pull request, then the reviewer will reject the change request and comment on specific issues
that need to be addressed by the programmer. If the code review is successful, then the reviewer may
add a comment providing positive feedback, merge the pull request, and close it.

Leading a code review 33

Programmers will need to note any comments made by the reviewer and take them on board. If
the code needs to be resubmitted, then the programmer will need to ensure that all the reviewer’s
comments have been addressed before resubmitting.

It is a good idea to keep code reviews short and not review too many lines at any one time.

Since a code review normally starts with a pull request, we will look at issuing a pull request, followed
by responding to a pull request.

Issuing a pull request

In source control, a pull request is a mechanism for submitting proposed changes to the code base to
the main branch or repository. It is a request to merge changes made in one branch of a repository
into another branch, usually the main branch.

The process typically involves a developer creating a new branch from the main branch, making
changes to the code in the new branch, and then submitting a pull request to merge the changes into
the main branch. The pull request includes information about the changes made, the reasons for
making them, and any related issues or tickets.

Once the pull request has been submitted, other developers can review the proposed changes, suggest
modifications, or approve the changes for merging into the main branch. The code changes are typically
reviewed for quality, compatibility, and compliance with any coding standards or best practices before
they are merged into the main branch.

To issue a pull request, all you must do (once you’ve checked your code in or pushed it) is click on
the Pull requests tab of your source control. There will then be a button you can click on – New pull
request. This will add your pull request to a queue, where it will be picked up by the relevant reviewers.

Information
We will be focusing on using GitHub for version control. If you have never used GitHub
before or are new to version control with GitHub, you can learn more about GitHub at GitHub
Skills: https://skills.github.com/.

GitHub is a web-based platform that provides a collaborative environment for developers to store,
manage, and share their code repositories. It is a cloud-based source control system that enables
teams to work together on projects and manage the changes that are made to the code base over time.

GitHub allows developers to create and manage their own Git repositories, which can be either public
or private. Developers can then use Git commands to push code changes to their repositories and
track the history of changes made to the code base over time. Other developers can then clone or fork
the repository to access the code and contribute to the project.

https://skills.github.com/

Code Review – Process and Importance34

GitHub provides a range of features and tools to support collaboration, including issue tracking, pull
requests, code reviews, and project management tools. These features enable teams to work together
more efficiently, resolve issues quickly, and maintain high standards of code quality.

In addition to its core functionality as a version control system, GitHub has become a hub for open-
source software development, with millions of open-source projects hosted on the platform. It also
provides a marketplace for third-party integrations and tools, making it a valuable resource for
developers looking to streamline their development workflows.

The following screenshots show the process of requesting and fulfilling a pull request via GitHub.

On your GitHub project page, click on the Pull requests tab:

Figure 2.2: The Pull requests tab

Then, click on the New pull request button. This will display the Comparing changes page:

Leading a code review 35

Figure 2.3: The Comparing changes page

If you are happy, then click on the Create pull request button to start the pull request. You will be
presented with the Open a pull request screen:

Code Review – Process and Importance36

Figure 2.4: The Open a pull request page

Write your comment regarding the pull request. Provide all the necessary information for the code
reviewer, but keep it brief and to the point. Useful comments include those that identify what changes
have been made. Modify the Reviewers, Assignees, Labels, Projects, and Milestones fields as necessary.
Then, once you are happy with the pull request details, click on the Create pull request button to
create the pull request. Your code will now be ready to be reviewed by your peers.

Leading a code review 37

Code conflict
In GitHub, code conflict resolution refers to the process of resolving conflicts that arise when
two or more developers make changes to the same code file or lines of code in a Git repository.
Code conflicts can occur when two or more developers modify the same piece of code in
different ways, or when one developer modifies a code file while another deletes it.

When a code conflict occurs, GitHub will highlight the conflicting lines of code in the code file
and notify the developers who made the conflicting changes. The developers can then use the
GitHub web interface or a Git client to review the changes and resolve the conflict.

There are several ways to resolve code conflicts in GitHub:

•	 Merge: Developers can merge their changes if they have made non-conflicting changes to different
parts of the code. This involves reviewing the changes and manually merging the code changes.

•	 Rebase: Developers can use the git rebase command to apply their changes on top of the
changes made by another developer. This involves rebasing their changes on top of the changes
made by the other developer and resolving any conflicts that arise.

•	 Manual resolution: If the changes made by the developers conflict with each other, developers
may need to manually resolve the conflicts by reviewing the changes and deciding which changes
to keep and which to discard.

GitHub provides a range of tools to help developers resolve code conflicts, including visual diff tools,
merge tools, and conflict resolution workflows. Code conflict resolution in GitHub aims to ensure that
the code base is kept up to date, that conflicts are resolved efficiently, and that code quality is maintained.

Responding to a pull request

Figure 2.5: Responding to a pull request

Code Review – Process and Importance38

Since the reviewer is responsible for reviewing pull requests before merging branches, we would do
well to look at responding to pull requests:

1.	 Start by cloning a copy of the code under review.

2.	 Review the comments and changes in the pull request.

3.	 Check that there are no conflicts with the base branch. If there are, then you will have to reject
the pull request with the necessary comments.

Otherwise, you can review the changes, make sure the code builds without errors, and make
sure there are no compilation warnings. At this stage, you will also look out for code smells
and any potential bugs. Code smell is a term that’s used in software development to describe
common signs of poor code design or implementation that can lead to code that is difficult to
understand, maintain, or extend.

They are not necessarily errors, but rather indicators that the code could be improved. You will
also check that the tests build, run, are correct, and provide good test coverage of the feature to
be merged. Make any comments necessary and reject the pull request unless you are satisfied.
When satisfied, you can add your comments and merge the pull request by clicking on the
Merge pull request button, as shown here:

Figure 2.6: Merging pull requests

Leading a code review 39

4.	 Now, confirm the merge by entering a comment and clicking on the Confirm merge button:

Figure 2.7: Confirming the merge

5.	 Once the pull request has been merged and the pull request has been closed, the branch can
be deleted by clicking on the Delete branch button, as can be seen in the following screenshot:

Code Review – Process and Importance40

Figure 2.8: The Delete branch button

In the previous section, you saw how the reviewee raises a pull request to have their code peer-reviewed
before it is merged. In this section, you saw how to review a pull request and complete it as part of a
code review. Now, we will look at the negative and positive feedback that affects reviewees.

Effects of feedback on reviewees

When performing a code review of your peer’s code, you must also consider the fact that feedback can
be positive or negative. Negative feedback does not provide specific details about the problem. The
reviewer focuses on the reviewee and not on the problem. Suggestions for improving the code are not
offered to the reviewee by the reviewer, and the reviewer’s feedback is aimed at hurting the reviewee.

Such negative feedback received by the reviewee offends them. This has a negative impact and can cause
them to start doubting themselves. A lack of motivation then develops within the reviewee, and this
can negatively impact the team, as work is not done on time or to the required level. The bad feelings

Leading a code review 41

between the reviewer and the reviewee will also be felt by the team, and an oppressive atmosphere
that negatively impacts everyone on the team can ensue. This can lead to other colleagues becoming
demotivated, and the overall project can end up suffering as a result.

In the end, it gets to the point where the reviewee has had enough and leaves for a new position
somewhere else to get away from it all. The project then suffers time-wise and even financially, as time
and money will need to be spent on finding a replacement. Whoever is found to fill the position must
be trained in the system and the working procedures and guidelines. The following diagram shows
negative feedback from the reviewer toward the reviewee:

Figure 2.9: The negative feedback process

Conversely, positive feedback from the reviewer to the reviewee has the opposite effect. When the
reviewer provides positive feedback to the reviewee, they focus on the problem and not on the person.
They explain why the code they’ve submitted is not good, along with the problems it can cause. The
reviewer will then suggest to the reviewee ways in which the code can be improved. The feedback
provided by the reviewer is only given to improve the quality of the code submitted by the reviewee.

When the reviewee receives the positive (constructive) feedback, they respond positively. They take on
board the reviewer’s comments and respond appropriately by answering any questions and asking any
relevant questions themselves. After this, the code is then updated based on the reviewer’s feedback.
The amended code is then resubmitted for review and acceptance. This has a positive impact on the
team as the atmosphere remains a positive one, and work is done on time and to the required quality.
The following diagram shows the results of positive feedback on the reviewee from the reviewer:

Code Review – Process and Importance42

Figure 2.10: Positive feedback process

The point to remember is that your feedback can be constructive or destructive. Your aim as a reviewer
is to be constructive and not destructive. A happy team is a productive team. A demoralized team is
not productive and is damaging to the project. So, always strive to maintain a happy team through
positive feedback.

A technique for positive criticism is the feedback sandwich technique. You start with praise on the
good points, then you provide constructive criticism, and then you finish with further praise. This
technique can be very useful if you have members on the team who don’t react well to any form
of criticism. Your soft skills in dealing with people are just as important as your software skills in
delivering quality code. Don’t forget that!

We will now move on and look at what we should review.

Knowing what to review
Different aspects of code must be considered when you’re reviewing it. Primarily, the code being
reviewed should only be the code that was modified by the programmer and submitted for review.
That’s why you should aim to make small submissions often. Small amounts of code are much easier
to review and comment on.

Let’s look at the different aspects a code reviewer should assess for a complete and thorough review.

Knowing what to review 43

The company’s coding guidelines and business requirement(s)

All code being reviewed should be checked against the company’s coding guidelines and the business
requirement(s) the code is addressing. All new code should adhere to the latest coding standards and
best practices employed by the company.

There are different types of business requirements. These requirements include those of the business and
the user/stakeholder as well as functional and implementation requirements. Regardless of the type of
requirement the code is addressing, it must be fully checked for correctness in meeting requirements.

For example, if the user/stakeholder requirement states that as a user, I want to add a new customer
account, does the code under review meet all the conditions set out in this requirement? If the
company’s coding guidelines stipulate that all code must include unit tests that test the normal flow
and exceptional cases, then have all the required tests been implemented? If the answer to any of
these questions is no, then the new code added by the developer fails and is sent back to be corrected.

Naming conventions

The code should be checked to see whether the naming conventions have been followed for the various
code constructs, such as classes, interfaces, member variables, local variables, enumerations, and
methods. Nobody likes cryptic names that are hard to decipher, especially if the code base is large.

Here are a couple of questions that a reviewer should ask:

•	 Are the names long enough to be human-readable and understandable?

•	 Are they meaningful concerning the intent of the code, but short enough to not irritate
other programmers?

As the reviewer, you must be able to read the code and understand it. If the code is difficult to read
and understand, then it needs to be refactored before being merged.

Formatting

Formatting goes a long way to making code easy to understand. Namespaces, braces, and indentation
should be employed according to the guidelines, and the start and end of code blocks should be
easily identifiable.

Again, here is a set of questions a reviewer should consider asking in their review:

•	 Is code to be indented using spaces or tabs?

•	 Has the correct amount of white space been employed?

•	 Are there any lines of code that are too long that should be spread over multiple lines?

•	 What about line breaks? Do the line breaks adhere to the rules laid out in the coding standards?

Code Review – Process and Importance44

•	 Following the style guidelines, is there only one statement per line? Is there only one declaration
per line?

•	 Are continuation lines correctly indented using one tab stop?

•	 Are methods separated by one line?

•	 Are multiple clauses that make up a single expression separated by parentheses?

•	 Are classes and methods clean and small, and do they only do the work they are meant to do?

•	 Do you see anything that stands out that, even if it compiles and works in isolation, could cause
bugs when integrated into the system?

Testing

Tests must be understandable and cover a good subset of use cases. They must cover the normal paths
of execution and exceptional use cases. When it comes to testing the code, the reviewer should check
for the following:

•	 Has the programmer provided tests for all the code?

•	 Is there any untested code?

•	 Do all the tests work?

•	 Do any of the tests fail?

Let’s see how the process works:

Figure 2.11: Test plan process flow

Knowing what to review 45

Untested code has the potential to raise unexpected exceptions during testing and production. But
just as bad as code that is not tested are tests that are not correct. This can lead to bugs that are hard
to diagnose, can be annoying for the customer, and make more work for you further down the line.
Bugs are technical debt and are looked upon negatively by the business. And so, as part of the process
of developing code, you need to ensure you have proper unit and end-to-end tests, and that the inputs
and outputs of those tests are correct.

Moreover, you may have written the code, but others may have to read it as they maintain and extend
the project. It is always a good idea to provide some documentation for your colleagues.

Now, concerning the customer, how are they going to know where your features are and how to use
them? Good documentation that is user-friendly is a good idea. And remember, not all your users
may be technically savvy. So, cater to the less technical person who may need handholding, but do it
without being patronizing.

As a technical authority reviewing the code, do you detect any code smells that may become a problem?
If so, then you must flag, comment, and reject the pull request and get the programmer to resubmit
their work.

As a reviewer, you should check that those exceptions are not used to control the program flow and
that any errors that are raised have meaningful messages that are helpful to developers and to the
customers who will receive them.

Documentation

Documentation is vital to the success of a software project. You need enough documentation to
enable a full understanding of the system so that it makes extending and maintaining the existing
software easier and less error-prone. Good documentation makes it easier to on-board new software
developers and help them get up and running faster. Here are some things to ask when reviewing the
documentation for a project:

•	 Is there adequate documentation of the code, including comments, documentation comments,
tests, and customer product documentation?

•	 Is the code well documented to aid with maintenance and support as well as adding new
product extensions?

Architectural guidelines and design patterns

When performing an architectural review of a C# project, you should be looking at the overall structure
of the application and ensuring that it adheres to best practices and is scalable, maintainable, and
has good performance. You should also ensure that the architecture supports the current and future
requirements of the project.

Code Review – Process and Importance46

Here are some questions you should ask yourself during the review:

1.	 Is the application using a layered architecture, such as the Model-View-Controller (MVC)
pattern or the Model-View-ViewModel (MVVM) pattern?

2.	 Are the layers of the application properly separated, and are there clear boundaries between them?

3.	 Are there any circular dependencies between components or modules in the application?

4.	 Are the interfaces between components or modules well-defined and easy to understand?

5.	 Are there any potential performance bottlenecks, such as slow database queries or
inefficient algorithms?

6.	 Are there any security vulnerabilities in the application, such as injection attacks or cross-site
scripting (XSS) attacks?

7.	 Is the code organized and structured in a way that makes it easy to maintain and understand?

8.	 Are there any anti-patterns or bad coding practices in the application?

9.	 Are there any unnecessary dependencies or components that could be removed to simplify
the architecture?

10.	 Does the architecture allow for easy testing and debugging of the application?

11.	 Is the code adhering to SOLID principles and other design patterns to ensure code quality
and extensibility?

12.	 Are there any performance issues or bottlenecks that could be improved, such as network
latency, database connection pooling, or caching?

13.	 Is the application following a consistent naming convention and code style to ensure that it’s
easy to read and maintain by other developers?

14.	 Are there any dependencies or third-party libraries that are being used, and are they being
properly managed and updated?

15.	 Is the architecture taking advantage of modern C# features, such as async/await and LINQ, to
improve code readability and performance?

16.	 Is the application following any industry standards or best practices, such as OWASP guidelines
for web security or Microsoft’s .NET Core design guidelines?

17.	 Are there any opportunities to improve the code’s organization and structure, such as grouping related
code into namespaces or creating separate projects for different components of the application?

18.	 Are there any potential issues with deploying and scaling the application, such as difficulties
with load balancing or scaling horizontally?

19.	 Are there any opportunities to introduce design patterns or architectural improvements to
reduce complexity and improve maintainability?

20.	 Is there a clear separation of concerns between the different components and layers of the
application, such as separating data access logic from business logic and presentation logic?

Knowing when to send code for review 47

By addressing these questions during an architectural review, you can ensure that the C# application
is well-designed, easy to maintain, and meets the requirements of its intended use case. This can lead
to a more efficient development process, fewer bugs and issues, and improved user satisfaction.

Performance and security

Other things that may need to be considered include performance and security:

•	 How well does the code perform?

•	 Are there any bottlenecks that need to be addressed?

•	 Is the code programmed in such a way that it protects against SQL injection attacks and denial-
of-service (DoS) attacks?

•	 Is code properly validated to keep the data clean so that only valid data gets stored in the database?

•	 Have you checked the user interface, documentation, and error messages for spelling mistakes?

•	 Have you encountered any magic numbers or hard-coded values?

•	 Is the configuration data correct?

•	 Have any secrets accidentally been checked in?

A comprehensive code review will encompass all the preceding aspects and their respective review
parameters. But let’s find out when it is the right time to even be performing a code review.

Knowing when to send code for review
In general, it’s a good idea to send code for a code review whenever you have made significant changes
or additions to the code base. This can help ensure that the code is well-designed, adheres to coding
standards, and is free of bugs or other issues.

Here are some specific situations where you might want to send code for a code review:

1.	 When you have completed a new feature or functionality: If you have added a new feature or
made a significant change to an existing feature, it’s a good idea to send the code for review. This
can help ensure that the feature works as intended and meets the requirements of the project.

2.	 When you have made changes to core functionality: If you have made changes to the core
functionality of the application, such as the database or authentication system, it’s important
to get the code reviewed to ensure that the changes are well-designed and don’t introduce any
security vulnerabilities or other issues.

3.	 When you have refactored or optimized code: If you have made changes to the code to improve
performance or make it more maintainable, it’s a good idea to send the code for review to ensure
that the changes are well-designed and don’t introduce any new bugs or issues.

Code Review – Process and Importance48

4.	 When you are unsure about a particular piece of code: If you are unsure about the best way
to implement a particular piece of functionality or if you are not sure if a particular piece of
code adheres to best practices or coding standards, it’s a good idea to get the code reviewed by
a more experienced developer.

5.	 When there is a requirement for code review in your development process: If your team
or organization requires code review as part of the development process, you should send the
code for review whenever you have made changes to the code base.

In general, it’s a good idea to send code for review early and often, to catch issues early in the development
process. Code review can help ensure that the code is well-designed, easy to maintain, and meets the
requirements of the project.

Providing and responding to review feedback
It is worth remembering that code reviews are aimed at the overall quality of code in keeping with
the company’s guidelines. Therefore, feedback should be constructive and not used as an excuse to
put down or embarrass a colleague. Similarly, reviewer feedback should not be taken personally and
responses to the reviewer should focus on suitable action and explanation.

The following diagram shows the process of issuing a PR, performing a code review, and either
accepting or rejecting the PR:

Figure 2.12: The peer code review process

Providing and responding to review feedback 49

Providing feedback as a reviewer

As the peer code reviewer, you will be responsible for understanding the requirements and making
sure the code meets them. So, look for the answers to these questions:

•	 Are you able to read and understand the code?

•	 Can you see any potential bugs?

•	 Have any trade-offs been made?

•	 If so, why were the trade-offs made?

•	 Do the trade-offs incur any technical debt that will need to be factored into the project further
down the line?

Once your review is complete, you will have three categories of feedback to choose from: positive,
optional, and critical. With positive feedback, you can provide commendations on what the programmer
has done well. This is a good way to bolster morale. Optional feedback can be very useful in helping
computer programmers hone their programming skills in line with the company guidelines, and they
can work to improve the overall well-being of the software being developed.

Finally, we have critical feedback. This is necessary for any problems that have been identified and
must be addressed before the code can be accepted and passed on to the QA department. Your critical
comments must address the specific issue being raised with valid reasons to support the feedback.

Responding to feedback as a reviewee

As the reviewee programmer, you must effectively communicate the background of your code to
your reviewer. While you are waiting for your code to be reviewed, you must not make any further
changes to it.

As you can guess, you will receive either positive, optional, or critical feedback from the reviewer. The
positive feedback works to boost your confidence in the project as well as your morale. Build upon it
and continue with your good practices. You may choose to act upon optional feedback, but it’s always
a good idea to talk it through with your reviewer.

For critical feedback, you must take it seriously and act upon it as this feedback is imperative for the
very success of the project. You must handle critical feedback politely and professionally. Don’t allow
yourself to be offended by any comments from your reviewer; they are not meant to be personal.

As soon as you receive your reviewer’s feedback, act upon it, and make sure that you discuss it with
them as necessary.

Code Review – Process and Importance50

Summary
In this chapter, we discussed the importance of performing code reviews and the complete process
of getting code ready for review and responding to reviewer comments as the programmer, along
with how to lead a code review and what to look for when performing a review as the code reviewer.
There are two roles in a peer code review. These are the reviewer and the reviewee. The reviewer is
the person performing the code review, and the reviewee is the person whose code is being reviewed.

You have also seen how you, as a reviewer, can categorize your feedback and why soft skills are
important when providing feedback to fellow programmers. And as a reviewee whose code is being
scrutinized, you have seen how important it is to build upon positive and optional feedback and how
important it is to act upon critical feedback.

By now, you should have a good understanding of why it is important to conduct regular code reviews,
and why they should be done before the code is passed on to the QA department. Peer code reviews
do take time and can be uncomfortable for both the reviewer and reviewee. But in the long run, they
work toward a high-quality product that is easy to extend and maintain, and they lead to better code
reuse as well.

In the next chapter, we will look at how to write clean classes, objects, and data structures. We will
discuss how to organize our classes effectively and ensure they only have one responsibility. We will
also cover commenting on classes to help with documentation. Additionally, we’ll look at designing
for change, the Law of Demeter, cohesion, and coupling. We’ll also cover concepts such as immutable
objects, hiding data, and exposing methods in objects. Finally, we’ll explore data structures.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 What are the two roles involved in a peer code review?

2.	 Who agrees on the people who will be involved in the peer code review?

3.	 How can you save your reviewer time and effort before requesting a peer code review?

4.	 When reviewing code, what kinds of things must you look out for?

5.	 What are the three categories of feedback?

6.	 As a developer, what are the things you should consider while developing a software application?

Further reading 51

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 https://docs.microsoft.com/en-us/visualstudio/code-
quality/?view=vs-2019: This documentation by Microsoft provides information on
the different tools available to help you analyze and improve the quality and maintainability
of your code

•	 https://en.wikipedia.org/wiki/Code_review: There are many useful links on
this page to further your knowledge of code reviews and their value to your business

•	 https://springframework.guru/gang-of-four-design-patterns/: The
Gang-of-Four design patterns book

•	 https://www.packtpub.com/application-development/net-design-
patterns: .NET Design Patterns, by Praseed Pai and Shine Xavier

•	 https://help.github.com/en: GitHub’s help page

•	 https://dofactory.com/net/design-patterns: C# Design Patterns with Quick
Examples (dofactory.com)

https://docs.microsoft.com/en-us/visualstudio/code-quality/?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/?view=vs-2019
https://en.wikipedia.org/wiki/Code_review
https://springframework.guru/gang-of-four-design-patterns/
https://www.packtpub.com/application-development/net-design-patterns
https://www.packtpub.com/application-development/net-design-patterns
https://help.github.com/en
https://dofactory.com/net/design-patterns

3
Classes, Objects,

and Data Structures

This chapter will provide an in-depth exploration of key concepts in C# object-oriented programming
(OOP). We will examine the importance of effective organization, formatting, and commenting when
working with classes. Additionally, we will delve into the Law of Demeter and how it can be used to
create clean and maintainable code. The chapter will also cover immutable objects and data structures,
exploring the interfaces and classes in the System.Collections.Immutable namespace.
Through these discussions, you will gain practical insights and skills that can help you write better
code, organize your work more efficiently, and become a more proficient C# developer.

We will cover the following topics in this chapter:

•	 Organizing classes using namespaces

•	 Formatting and commenting on classes

•	 Writing clean C# objects and data structures that follow the Law of Demeter

•	 Immutable objects and data structures, and the interfaces and classes in the System.
Collections.Immutable namespace

Classes, Objects, and Data Structures54

This is what we will learn:

•	 How to effectively organize classes using namespaces

•	 How to write classes with a single responsibility, leading to smaller and more meaningful classes

•	 How to write comments that can aid in generating documentation for APIs

•	 How to write programs that are easy to modify and extend, thanks to high cohesion and
low coupling

•	 How to apply the Law of Demeter to write and use immutable data structures

First, let’s review the technical requirements for working through this chapter.

Technical requirements
You will need a recent version of Visual Studio Community Edition to follow along. You can access
the source code for this chapter on GitHub at https://github.com/PacktPublishing/
Clean-Code-with-CSharp-Second-Edition/tree/main/CH03.

The code is contained in a single solution with folders for specific topics. The Core folder holds
demonstration classes that demonstrate namespaces and class grouping, with classes only doing
what they are supposed to. The other folders demonstrate cohesion, coupling, dependency injection,
designing for change, encapsulation, using immutable objects and data structures, inversion of control,
and the Law of Demeter.

Organizing classes
You will notice that the hallmark of a clean project is that it will have well-organized classes and that
folders will be used to group classes that belong together. Furthermore, the classes in the folders will
be enclosed within namespaces that match the assembly name and folder structure.

Each interface, class, struct, and enum should have its own source file in the correct namespace.
Source files should be logically grouped in the appropriate folders and the namespaces for the source
files should match the assembly name and folder structure. The following screenshot demonstrates a
clean folder and file structure for a WPF project:

https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH03
https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH03

Organizing classes 55

Figure 3.1: Clean folder structure

Classes, Objects, and Data Structures56

Figure 3.1 displays the file and folder structure for a Visual Studio C# solution that is clean in its
organization. Folders are named correctly, and only classes with the relevant functionality are placed
in those folders. This makes code easier to locate and maintain as developers will intuitively be able
to locate the classes they are looking for. For instance, if the developer needed to find and work
on the SQL Server-related classes, they would navigate to Data | Relational | SqlServer. There
are three SQL Server-related classes in the SqlServer folder: SqlServerDataExecutor,
SqlServerDataReader, and SqlServerDataSource.

Note
It is a bad idea to have more than one interface, class, struct, or enum in an actual source file.
The reason for this is that it can make locating items difficult, despite the fact that we have
IntelliSense to assist us. Intellisense is provided by IDEs such as Visual Studio and Visual Code.

When thinking about your namespaces, it is a good idea to follow the Pascal casing with a sequence
of company name, product name, technology name, and then plural names for components separated
by spaces. See the following for an example:

CH3.Product.Wpf.Feature.Subnamespace {} // Product, technology and
feature specific.

The reason for starting with the company name is that it helps to avoid namespace clashes. So, if
Microsoft and FakeCompany both have a namespace called System, which System namespace
you want to use can be differentiated by the company name. Naming classes too generically can also
cause namespace clashes. And so, when naming a namespace, it is best to be specific. For example,
if you have some WPF extensions, you would place them in the namespace called FakeCompany.
WpfUtilities.

Next, any items of code that can be reused in multiple projects are best placed in separate assemblies
that can be accessed by multiple projects:

CH3.Wpf.Feature.Subnamespace {} /* Technology and feature specific.
Can be used across multiple products. */

When using tests in your code, such as when doing test-driven development (TDD), it is always best
to keep your test classes in separate assemblies. Test assemblies should always be given the name of
the assembly they are testing with the namespace Tests appended to the end of the assembly name:

CH3.Core.Feature
CH3.Core.Feature.Tests

You should avoid putting tests for different assemblies in the same test assembly as each other for small
to medium-sized solutions. Always try to keep them separate. However, if you have large solutions
with many projects, you can group tests together. For example, when performing DDD, you can group
tests by the bounded context such as Dms.Engine, Dms.Shared, Dms.Projection, Dms.

Organizing classes 57

Process, and Dms.Tests. So, instead of having a separate test library for a bounded context, you
would have a single one for all bounded contexts to avoid solution project overload. Large solutions
with many projects can be hard to read and manage, and so from a human perspective, combining
tests can be a simple way to reduce the solution project count. Test assemblies should be separated
based on the type of test (unit, integration, functional, and so on).

In addition, the namespace and type should not use the same name as this can produce compiler
conflicts. To summarize, here are the rules to keep in mind when organizing classes:

•	 Use Pascal casing with a sequence of company name, product name, technology name, and
plural names for components separated by spaces

•	 Place reusable items of code in separate assemblies

•	 Don’t use the same name for the namespace and type

•	 Don’t pluralize company and product names and acronyms

•	 Split solutions into multiple projects depending on how the assemblies are to be deployed
and distributed

•	 Remember what assemblies do (following the single responsibility principle (SRP)?

Figure 3.2: Diagram showing interface, struct, and class names inside packages

Classes, Objects, and Data Structures58

Figure 3.2 shows two different packages with classes, interfaces, and structs. You’ll notice that these
names are all singular and not plural.

We’ll move on to the responsibility of classes next.

A class should have only one responsibility
Responsibility is the work that has been assigned to the class. In the SOLID set of principles, the S stands
for the SRP. When applied to a class, the SRP states that the class must only work on a single aspect of
the feature being implemented. The responsibility of that single aspect should be fully encapsulated
within the class. Therefore, you should never apply more than one responsibility to a class.

Let’s look at an example to understand why:

public class MultipleResponsibilities
{
    public string DecryptString(
        string text,
        SecurityAlgorithm algorithm)
    {
        // ...implementation...
    }

    public string EncryptString(
        string text,
        SecurityAlgorithm algorithm)
    {
        // ...implementation...
    }

    public string ReadTextFromFile(string filename)
    {
        // ...implementation...
    }

    public string SaveTextToFile(
        string text, string filename)
    {
        // ...implementation...
    }
}

As you can see in the preceding code, for the MultipleResponsibilities class, we have our
cryptography functionalities implemented with the DecryptString and EncryptString methods.

A class should have only one responsibility 59

We also have file access implemented with the ReadTextFromFile and SaveTextToFile
methods. This class breaks the SRP.

So, we need to break this class up into two classes, one for cryptography and the other for file access:

namespace CH3.Core.Security;
public class Cryptography
{
    public string DecryptString(
        string text,
        SecurityAlgorithm algorithm)
    {
        // ...implementation...
    }

    public string EncryptString(
        string text,
        SecurityAlgorithm algorithm)
    {
        // ...implementation...
    }
}

As we can now see from the preceding code, by moving the EncryptString and DecryptString
methods to their own Cryptography class in the core security namespace, we have made it easy to
reuse the code to encrypt and decrypt strings across different products and technology groups. The
Cryptography class also complies with the SRP.

In the preceding code, we can see that the SecurityAlgorithm parameter of the Cryptography
class is an enum and has been placed in its own source file. This helps to keep code clean, minimal,
and well organized.

Now, in the following TextFile class, we again abide by the SRP and have a nice reusable class
that is in the appropriate core filesystem namespace. The TextFile class is reusable across different
products and technology groups:

namespace CH3.Core.FileSystem;
public class TextFile
{
    public string ReadTextFromFile(string filename)
    {
        // ...implementation...
    }

    public string SaveTextToFile(string text, string filename)

Classes, Objects, and Data Structures60

    {
        // ...implementation...
    }
}

We’ve looked at the responsibility of classes. Now let’s take a look at organizing the contents of a class.

Class organization
The way to organize an actual class will differ between organizations, but the key is consistency. The
way you will be shown to organize a class in this section is just one possible way. It is the way that I
have most commonly encountered in the workplace.

The way to organize a class file is as follows:

•	 Class file comments

•	 Using statements

•	 The namespace

•	 The class

•	 Fields

•	 The constructor

•	 Properties

•	 Private methods

•	 Public methods

As you can see, this ordering makes it easy to know where in the code to look for class components.
To make organization even easier, you can use regions. Regions are collapsible code used to group
items together. When you have a long class file, regions can help to make your code much easier to
work on – even more so when constructors, properties, and methods are collapsed with them.

The following code shows how you could organize your class files as we’ve spoken about:

/**
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER

Commenting for documentation generation 61

 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE
 * SOFTWARE.
**/
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace CH3;
/// <summary>
/// Demonstration of class file organization
/// </summary>
internal class ClassOrganization
{
    #region Fields
    // Place fields at the top of your class.
    #endregion
    #region Constructors
    // Place constructors after your field declarartions.
    #endregion
    #region Properties
    // Place your properties after your constructors
    #endregion
    #region Private Methods
    // Place your private methods after your properties.
    #endregion
    #region Public Methods
    // Place your public methods after your private methods.
    #endregion
}

Looking at this class file, it is easy to see how such organization makes the class more manageable and
easy to maintain and extend. Let’s take a look at commenting for generating documentation.

Commenting for documentation generation
Documenting your source code is always a good idea. It helps other developers to understand the
code and eases code adoption and maintenance.

It is always a good idea to include copyright notices at the top of each source code file and to comment
on your namespaces, interfaces, classes, enums, structs, methods, and properties. Your copyright

Classes, Objects, and Data Structures62

comments should be first in the source file, above the using statements, and take the form of a
multiline comment that starts with /* and ends with */:

/**
* Copyright 2019 PacktPub
*
* Permission is hereby granted, free of charge, to any person
obtaining a copy of
* this software and associated documentation files (the "Software"),
to deal in
* the Software without restriction, including without limitation the
rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the
* Software, and to permit persons to whom the Software is furnished to
do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE
* SOFTWARE.
**/

using System;

/// <summary>
/// The CH3.Core.Security namespace contains fundamental types used
/// for the purpose of implementing application security.
/// </summary>
namespace CH3.Core.Security
{
    /// <summary>

Commenting for documentation generation 63

    /// Encrypts and decrypts provided strings based on the selected
    /// algorithm.
    /// </summary>
    public class Cryptography
    {
        /// <summary>
        /// Decrypts a string using the selected algorithm.
        /// </summary>
        /// <param name="text">The string to be decrypted.</param>
        /// <param name="algorithm">
        /// The cryptographic algorithm used to decrypt the string.
        /// </param>
        /// <returns>Decrypted string</returns>
        public string DecryptString(string text, SecurityAlgorithm
algorithm)
        {
            // ...implementation...
            throw new NotImplementedException();
        }
        /// <summary>
        /// Encrypts a string using the selected algorithm.
        /// </summary>
        /// <param name="text">The string to encrypt.</param>
        /// <param name="algorithm">
        /// The cryptographic algorithm used to encrypt the string.
        /// </param>
        /// <returns>Encrypted string</returns>
        public string EncryptString(string text, SecurityAlgorithm
algorithm)
        {
            // ...implementation...
            throw new NotImplementedException();
        }
    }
}

The preceding code sample provides an example of a documented namespace and class with documented
methods. You will see that the documentation comments for the namespace and contained members start
with the documentation comment /// and are directly above the item being commented on. When you
type the three forward slashes, Visual Studio automatically generates the XML tags based on the line below.

For example, in the preceding code, the namespace only has a summary and so does the class, but
both methods contain a summary, a couple of parameter comments, and a return comment.

Classes, Objects, and Data Structures64

The following table contains the different XML tags that you can use in your documentation comments.

Tag Section Purpose
<c> <c> Formats text as code
<code> <code> Provides source code as output
<example> <example> Provides an example
<exception> <exception> Describes the exceptions that can be thrown by the method
<include> <include> Includes XML from an external file
<list> <list> Adds a list or table
<para> <para> Adds structure to text
<param> <param> Describes the parameter of a constructor or method
<paramref> <paramref> Tags a word to identify it as a parameter
<permission> <permission> Describes the security accessibility of the member
<remarks> <remarks> Provides additional information
<returns> <returns> Describes the return type
<see> <see> Adds a hyperlink
<seealso> <seealso> Adds a see also entry
<summary> <summary> Summarizes the type or member
<value> <value> Describes the value
<typeparam> Describes the type parameter
<typeparamref> Tags a word to identify it as a type parameter

Table 3.1: Documentation XML tags

From the preceding table, it is clear that you have plenty of scope for documenting your source code.
So, it is a good idea to make the best use of the available tags to document your code. The better the
documentation, the quicker and easier it will be for other developers to get up to speed with using the code.

Note
Visual Studio and other IDEs fully understand XML commenting syntax, so you will have
available tags listed for you. You can read more about recommended XML tags for C# code
documentation at https://learn.microsoft.com/en-us/dotnet/csharp/
language-reference/xmldoc/recommended-tags.

It is now time to look at cohesion and coupling.

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/recommended-tags
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/recommended-tags

Cohesion and coupling 65

Cohesion and coupling
Low cohesion and high cohesion, along with tight coupling and loose coupling, are important concepts
in software engineering that have a direct impact on the quality and maintainability of code. Let’s
explore these concepts in the context of C# and how they can affect the quality of your code:

•	 Low cohesion:

	� Low cohesion refers to a situation where a class or module has too many responsibilities, or
its functions and methods are not closely related to each other

	� In C#, low cohesion can result in classes that are difficult to understand and maintain, as
they perform various unrelated tasks

	� This can lead to code that is more error-prone, harder to test, and challenging to extend
or modify

•	 High cohesion:

	� High cohesion means that a class or module has a well-defined and focused set of responsibilities,
and its methods and functions are closely related to those responsibilities

	� In C#, high cohesion results in code that is easier to understand, maintain, and test, as each
class or module has a clear and specific purpose

	� High cohesion helps in building clean and modular code

•	 Tight coupling:

	� Tight coupling refers to a situation where two or more classes or modules are highly dependent
on each other. They have strong dependencies and are interconnected.

	� In C#, tight coupling can lead to code that is difficult to maintain and modify because changes
in one class can have a cascading impact on other classes.

	� Tight coupling can make code less reusable and hinder testing.

•	 Loose coupling:

	� Loose coupling means that classes or modules are designed to have minimal dependencies
on each other. They interact through well-defined interfaces or abstractions, reducing
their interdependence.

	� In C#, loose coupling promotes clean code by making it more modular, reusable, and easier
to change without affecting other parts of the system.

	� Loose coupling is particularly important in C# for promoting testability and flexibility.

Classes, Objects, and Data Structures66

So, low cohesion and tight coupling tend to produce bad and hard-to-maintain code in C# and other
programming languages. On the other hand, high cohesion and loose coupling promote clean, modular,
and maintainable code. When designing software in C#, it’s essential to strive for high cohesion and
loose coupling to enhance code quality and ease of development and maintenance.

We’ll now look at examples of coupling and cohesion.

Tight coupling

Tight coupling in C# occurs when two or more classes or components are highly dependent on each
other, making it difficult to change one class without affecting the others. This can lead to several
issues, such as reduced maintainability, reusability, and testability. Here’s an example of tight coupling
in C# and an explanation of why it’s considered bad coding:

public class Order
{
    public decimal CalculateTotalPrice(decimal unitPrice, int
quantity)
    {
        decimal discount = DiscountCalculator.
CalculateDiscount(unitPrice, quantity);
        return unitPrice * quantity - discount;
    }
}
public class DiscountCalculator
{
    public static decimal CalculateDiscount(decimal unitPrice, int
quantity)
    {
        if (quantity >= 10)
        {
            return unitPrice * quantity * 0.1m; // 10% discount for
bulk orders
        }
        else
        {
            return 0m; // No discount
        }
    }
}

Cohesion and coupling 67

In this example, the Order class is tightly coupled to the DiscountCalculator class because
it directly calls the CalculateDiscount method of DiscountCalculator to calculate the
discount. This tight coupling leads to several issues:

•	 Low maintainability: If you need to change the discount calculation logic or introduce a new
discount strategy, you would have to modify the DiscountCalculator class. However,
this change can have unintended consequences in the Order class or any other class that
uses DiscountCalculator.

•	 Low reusability: The DiscountCalculator class cannot be easily reused in other parts of
the code base because it is closely tied to the Order class. In a well-designed system, discount
calculation logic should be reusable across different components.

•	 Low testability: When testing the Order class, it’s challenging to isolate and test its logic
independently from DiscountCalculator. You are forced to test both classes together,
which can make unit testing more complex.

We will now look at how we can fix this using low coupling.

Low coupling

To improve the code in the previous section and reduce tight coupling, you can introduce loose coupling
through the use of interfaces or abstractions. For instance, you can define an IDiscountCalculator
interface and inject the discount calculator as a dependency into the Order class, promoting better
separation of concerns, maintainability, and testability:

public interface IDiscountCalculator
{
    decimal CalculateDiscount(decimal unitPrice, int quantity);
}

Now that we have an interface for calculating discounts, we can use this interface to create different
types of discount calculators, such as a bulk order discount calculator:

public class BulkOrderDiscountCalculator : IDiscountCalculator
{
    public decimal CalculateDiscount(decimal unitPrice, int quantity)
    {
        if (quantity >= 10)
        {
            return unitPrice * quantity * 0.1m; // 10% discount for
bulk orders
        }
        else
        {

Classes, Objects, and Data Structures68

            return 0m; // No discount
        }
    }
}

As can be seen, BulkOrderDiscountCalculator implements the IDiscountCalculator. We
can now pass in any class to the Order class constructor that implements IDiscountCalculator:

public class Order
{
    private readonly IDiscountCalculator discountCalculator;

    public Order(IDiscountCalculator discountCalculator)
    {
        this.discountCalculator = discountCalculator;
    }
    public decimal CalculateTotalPrice(decimal unitPrice, int
quantity)
    {
        decimal discount = discountCalculator.
CalculateDiscount(unitPrice, quantity);
        return unitPrice * quantity - discount;
    }
}

By using interfaces and dependency injection, you achieve loose coupling, making it easier to modify,
reuse, and test individual components without affecting the others. This results in cleaner, more
maintainable code.

Next, we will look at low cohesion.

Low cohesion

Low cohesion in C# refers to a situation where a class or module has multiple responsibilities that
are not closely related. This results in code that is hard to understand, maintain, and test. Here’s an
example of low cohesion in C# and an explanation of why it’s considered bad coding:

public class Employee
{
    public string Name { get; set; }
    public int EmployeeId { get; set; }
    public decimal Salary { get; set; }
    public Employee(string name, int employeeId, decimal salary)
    {
        Name = name;

Cohesion and coupling 69

        EmployeeId = employeeId;
        Salary = salary;
    }
    public void CalculateTax()
    {
        // Tax calculation logic
    }
    public void GeneratePayStub()
    {
        // Pay stub generation logic
    }
    public void SaveToDatabase()
    {
        // Database save logic
    }
    public void SendEmail()
    {
        // Email sending logic
    }
}

In this example, the Employee class exhibits low cohesion because it combines several
unrelated responsibilities:

•	 Data storage: It stores employee information such as name, ID, and salary

•	 Tax calculation: It calculates taxes for the employee

•	 Pay stub generation: It generates pay stubs for the employee

•	 Database interaction: It has logic for saving employee data to a database

•	 Email sending: It can send emails

The following explains why low cohesion is considered bad coding:

•	 Maintenance difficulty: Code with low cohesion is difficult to maintain because different
responsibilities are mixed within the same class. When one aspect of the class needs to be
changed, it can impact other unrelated aspects, making it error-prone and hard to manage.

•	 Reduced reusability: Low-cohesion classes are less reusable because they often contain tightly coupled
logic, making it challenging to extract and use individual components in other parts of the code base.

•	 Testing complexity: Unit testing becomes more complex when a class is responsible for multiple,
unrelated tasks. Testing one functionality might require setting up or invoking unrelated functions.

In the next section, we will improve this code to make it more cohesive.

Classes, Objects, and Data Structures70

High cohesion

To improve this code and address the issue of low cohesion, you can refactor it into separate classes
with single responsibilities. For example, you can have separate classes for employee information, tax
calculator, pay stub generator, database interaction, and email sending. This not only makes the code
more maintainable but also enhances reusability and testability:

public class Employee
{
    public string Name { get; set; }
    public int EmployeeId { get; set; }
    public decimal Salary { get; set; }

    public Employee(string name, int employeeId, decimal salary)
    {
        Name = name;
        EmployeeId = employeeId;
        Salary = salary;
    }
}
public class TaxCalculator
{
    public decimal CalculateTax(decimal salary)
    {
        // Tax calculation logic
        // ...
    }
}
public class PayStubGenerator
{
    public void GeneratePayStub(Employee employee)
    {
        // Pay stub generation logic
        // ...
    }
}
public class DatabaseService
{
    public void SaveEmployeeToDatabase(Employee employee)
    {
        // Database save logic
        // ...
    }
}

Designing for change 71

public class EmailService
{
    public void SendEmail(string recipient, string message)
    {
        // Email sending logic
        // ...
    }
}

By breaking down the responsibilities into separate classes, you achieve higher cohesion and better
separation of concerns, resulting in cleaner, more maintainable code. Each class now has a single,
well-defined purpose, making it easier to work with and test.

We will now move on to discuss designing for change.

Designing for change
When designing for change, you should change the what to how.

The what is the requirement of the business. As any seasoned person involved in a role within software
development will tell you, requirements frequently change. As such, the software has to be adaptable
to meet those changes. The business is not interested in how the requirements are implemented by the
software and infrastructure teams, only that the requirements are met precisely on time and on budget.

On the other hand, the software and infrastructure teams are more focused on how those business
requirements are to be met. Regardless of the technology and processes that are adopted for the
project to implement the requirements, the software and target environment must be adaptable to
changing requirements.

But that is not all. You see, software versions often change with bug fixes and new features. As new features
are implemented and refactoring takes place, the software code becomes deprecated and eventually obsolete.
On top of that, software vendors have a road map of their software that forms part of their application
life cycle management. Eventually, software versions get to the point where they are retired and no longer
supported by the vendor. This can force a major migration from the current version, which will no longer be
supported, to the newly supported version, and this can bring with it breaking changes that must be addressed.

Interface-oriented programming

Interface-oriented programming (IOP) helps us to program polymorphic code. Polymorphism in
OOP is defined as different classes having their own implementations of the same interface. And so,
by using interfaces, we can morph our software to meet the needs of the business.

Let’s consider a database connection example. An application may be required to connect to different
data sources. But how can the database code remain the same no matter what database is employed?
Well, the answer lies in the use of interfaces.

Classes, Objects, and Data Structures72

You have different database connection classes that implement the same database connection interface,
but they each have their own versions of the implemented methods. This is known as polymorphism.
The database then accepts a database connection parameter that is of the database connection interface
type. You can then pass into the database any database connection type that implements the database
connection interface. Let’s code this example so that it makes things a little clearer.

Start by creating a simple .NET Framework console application. Then, update the Program class
as follows:

static void Main(string[] args)
{
    var program = new Program();
    program.InterfaceOrientedProgrammingExample();
}

private void InterfaceOrientedProgrammingExample()
{
    var mongoDb = new MongoDbConnection();
    var sqlServer = new SqlServerConnection();

    var db = new Database(mongoDb);
    db.OpenConnection();
    db.CloseConnection();

    db = new Database(sqlServer);
    db.OpenConnection();
    db.CloseConnection();
}

In this code, the Main() method creates a new instance of the Program class and then calls the
InterfaceOrientedProgrammingExample() method. In that method, we instantiate two
different database connections, one for MongoDB and one for SQL Server. We then instantiate the
database with a MongoDB connection, open the database connection, and then close it. Then, we
instantiate a new database using the same variable and pass in a SQL Server connection, then open
the connection and close the connection.

As you can see, we only have one Database class with a single constructor, yet the Database
class will work with any database connection that implements the required interface. So, let’s add the
IConnection interface:

public interface IConnection
{
    void Open();
    void Close();
}

Designing for change 73

The interface has only two methods, called Open() and Close(). Add the MongoDB class that
will implement this interface:

public class MongoDbConnection : IConnection
{
    public void Close()
    {
        Console.WriteLine("Closed MongoDB connection.");
    }

    public void Open()
    {
        Console.WriteLine("Opened MongoDB connection.");
    }
}

We can see that the class implements the IConnection interface. Each method prints out a message
to the console. Now, add that SQLServerConnection class:

public class SqlServerConnection : IConnection
{
    public void Close()
    {
        Console.WriteLine("Closed SQL Server Connection.");
    }

    public void Open()
    {
        Console.WriteLine("Opened SQL Server Connection.");
    }
}

The same goes for the Database class. It implements the IConnection interface, and for each
method invocation, a message is printed to the console. And now for the Database class, as follows:

public class Database
{
    private readonly IConnection _connection;

    public Database(IConnection connection)
    {
        _connection = connection;
    }

    public void OpenConnection()

Classes, Objects, and Data Structures74

    {
        _connection.Open();
    }

    public void CloseConnection()
    {
        _connection.Close();
    }
}

The Database class accepts an IConnection parameter. This sets the _connection
member variable. The OpenConnection() method opens the database connection, and the
CloseConnection() method closes the database connection. It’s time to run the program. You
should see the following output in the console window:

Opened MongoDB connection.
Closed MongoDB connection.
Opened SQL Server Connection.
Closed SQL Server Connection.

So, now, you can see the advantage of programming to interfaces. You can see how they enable us to extend the
program without having to modify the existing code. That means that if we need to support more databases,
then all we have to do is write more connection objects that implement the IConnection interface.

Now that you know how interfaces work, we can look at how to apply them to dependency injection
and inversion of control. Dependency injection helps us to write clean code that is loosely coupled
and easy to test, and inversion of control enables the interchanging of software implementations as
required, as long as those implementations implement the same interface.

Dependency injection and inversion of control

In C#, we have the ability to address changing software needs using dependency injection (DI)
and inversion of control (IoC). These two terms do have different meanings but are often used
interchangeably to mean the same thing.

With IoC, you program a framework that accomplishes tasks by calling modules. An IoC container
is used to keep a register of modules. These modules are loaded when requested by the user or
configuration requests them.

DI removes internal dependencies from classes. Dependent objects are then injected by an external
caller. An IoC container uses DI to inject dependent objects into an object or method.

In this chapter, you will find some useful resources that will help you to understand IoC and DI. You
will then be able to use these techniques in your programs.

Let’s see how we can implement our own simple DI and IoC without any third-party frameworks.

Designing for change 75

An example of DI

In this example, we are going to roll our own simple DI. We will have an ILogger interface that will
have a single method with a string parameter. We will then produce a class called TextFileLogger
that implements the ILogger interface and outputs a string to a text file. Finally, we will have a
Worker class that will demonstrate constructor injection and method injection. Let’s look at the code.

The following interface has a single method that will be used for implementing classes to output a
message according to the implementation of the method:

namespace CH3.DependencyInjection
{
    public interface ILogger
    {
        void OutputMessage(string message);
    }
}

The TexFileLogger class implements the ILogger interface and outputs the message to a text file:

using System;
namespace CH3.DependencyInjection
{
    public class TextFileLogger : ILogger
    {
        public void OutputMessage(string message)
        {
            System.IO.File.WriteAllText(FileName(), message);
        }

        private string FileName()
        {
            var timestamp = DateTime.Now.ToFileTimeUtc().ToString();
            var path = Environment.GetFolderPath(Environment.
SpecialFolder.MyDocuments);
            return $"{path}_{timestamp}";
        }
    }
}

The Worker class provides an example of constructor DI and method DI. Notice that the parameter
is an interface. So, any class that implements that interface can be injected at runtime:

namespace CH3.DependencyInjection
{

Classes, Objects, and Data Structures76

    public class Worker
    {
        private ILogger _logger;

        public Worker(ILogger logger)
        {
            _logger = logger;
            _logger.OutputMessage("This constructor has been injected
with a logger!");
        }

        public void DoSomeWork(ILogger logger)
        {
            logger.OutputMessage("This method has been injected with a
logger!");
        }
    }
}

The DependencyInject method in the Program class runs the example to show DI in action:

private void DependencyInject()
{
    var logger = new TextFileLogger();
    var di = new Worker(logger);
    di.DoSomeWork(logger);
}

As you can see from the code we’ve just looked at, we start by producing a new instance of the
TextFileLogger class. This object is then injected into the constructor of the worker. We then
call the DoSomeWork method and pass in the TextFileLogger instance. In this simple example,
we have seen how to inject code into a class via its constructor and methods.

What is good about this code is it removes the dependency between the worker and the TextFileLogger
instance. This makes it easy for us to replace the TextFileLogger instance with any other type of
logger that implements the ILogger interface. So, we could have used, for example, an event viewer
logger or even a database logger. Using DI is a good way to reduce coupling in your code.

How Microsoft enables DI using core .NET service classes

In .NET Core, DI is an integral part of the framework, and Microsoft provides a built-in DI container.
The following code is a simple example demonstrating how to use DI with the standard .NET Core
services classes for both Singleton and Transient lifetimes.

Designing for change 77

Let’s create a simple interface, Ilogger, and two classes, ConsoleLogger and FileLogger,
implementing this interface. We’ll register these services with different lifetimes in the DI container.

First, we’ll start with the ILogger interface:

public interface ILogger
{
    void Log(string message);
}

This interface contains a single method called Log that accepts a string parameter, and the method
does not return a value. The different implementations of this interface will provide their own way of
logging messages using the Log method. Next, we’ll add the ConsoleLogger class:

public class ConsoleLogger : ILogger
{
    public void Log(string message)
    {
        Console.WriteLine($"Console Logger: {message}");
    }
}

This class implements the ILogger interface and implements the Log method by logging text input
from the parameter to the console window. Now, we’ll add the FileLogger class:

public class FileLogger : ILogger
{
    public void Log(string message)
    {
        // Implementation to log to a file (for simplicity, not
implemented in this example)
        Console.WriteLine($"File Logger: {message}");
    }
}

We’ll now set up DI in the console application’s Program class:

using Microsoft.Extensions.DependencyInjection;
using System;
class Program
{
    static void Main()
    {
        // Create a service collection
        var serviceProvider = new ServiceCollection()
            .AddSingleton<ILogger, ConsoleLogger>() // Singleton

Classes, Objects, and Data Structures78

lifetime
            .AddTransient<ILogger, FileLogger>()    // Transient
lifetime
            .BuildServiceProvider();
        // Resolve and use the Singleton logger
        var singletonLogger = serviceProvider.
GetRequiredService<ILogger>();
        singletonLogger.Log("This message is logged by the Singleton
Logger");
        // Resolve and use the Transient logger
        var transientLogger = serviceProvider.
GetRequiredService<ILogger>();
        transientLogger.Log("This message is logged by the Transient
Logger");

        // Check if both loggers are the same instance for Singleton
        Console.WriteLine($"Is Singleton Logger the same
instance as Transient Logger? {ReferenceEquals(singletonLogger,
transientLogger)}");
    }
}

In this example, ConsoleLogger is registered as a Singleton, meaning only one instance will be
created and shared throughout the application. FileLogger is registered as Transient, meaning a
new instance will be created every time it is requested.

When you run the program, you’ll see that the Singleton logger is the same instance for each resolution,
while the Transient logger is a new instance every time it’s resolved.

Now that we’ve seen DI at work, we should also look at IoC. And we’ll do that now.

An example of IoC

In this example, we are going to register dependencies with an IoC container. We will then use DI to
inject the necessary dependencies.

In the following code, we have an IoC container. The container registers the dependencies to be injected
in a dictionary, and reads values from the configuration metadata:

using System;
using System.Collections.Generic;

namespace CH3.InversionOfControl
{
    public class Container
    {
        public delegate object Creator(Container container);

Designing for change 79

        private readonly Dictionary<string, object> configuration =
new Dictionary<string, object>();
        private readonly Dictionary<Type, Creator> typeToCreator = new
Dictionary<Type, Creator>();

        public Dictionary<string, object> Configuration
        {
            get { return configuration; }
        }

        public void Register<T>(Creator creator)
        {
            typeToCreator.Add(typeof(T), creator);
        }

        public T Create<T>()
        {
            return (T)typeToCreator[typeof(T)](this);
        }

        public T GetConfiguration<T>(string name)
        {
            return (T)configuration[name];
        }
    }
}

Then, we create a container, and we use the container to configure metadata, register types, and create
instances of dependencies:

private void InversionOfControl()
{
    Container container = new Container();
    container.Configuration["message"] = "Hello World!";

    container.Register<ILogger>(delegate
    {
        return new TextFileLogger();
    });

    container.Register<Worker>(delegate
    {
        return new Worker(container.Create<ILogger>());

Classes, Objects, and Data Structures80

    });
}

Note
In Chapter 13, we will create a MAUI application. In that application, you will see how we use
MAUI’s in-built IoC functionality within Visual Studio to register concrete types for interfaces
such as Singletons and transients.

How Microsoft enables IoC using core .NET service classes

Microsoft uses its built-in DI system to enable IoC. Here’s a simple example using .NET Core’s built-in
DI system. In this example, we’ll create a simple service and inject it into a class that depends on it.

Our example will be a notification service that sends a message. Let’s start with IMessageInterface:

public interface IMessageService
{
    void SendMessage(string message);
}

This interface we be implemented by EmailService to send email messages:

public class EmailService : IMessageService
{
    public void SendMessage(string message)
    {
        Console.WriteLine($"Sending email: {message}");
    }
}

With our EmailService class that implements ImessageService written, we can now add
our NotificationService class:

public class NotificationService
{
    private readonly IMessageService _messageService;

    // Constructor injection - the IMessageService is injected
    public NotificationService(IMessageService messageService)
    {
        _messageService = messageService;
    }

    public void Notify(string message)
    {

The Law of Demeter 81

        _messageService.SendMessage(message);
    }
}

This class uses constructor injection to obtain the implementation class of the IMessageService
interface. The Notify method then passes a string into the message service to send the message.

Now, we need to configure IoC in the application’s Program class:

class Program
{
    static void Main()
    {
        var serviceProvider = new ServiceCollection()
            .AddScoped<IMessageService, EmailService>() // Use
AddScoped, AddTransient, or AddSingleton based on your needs
            .AddScoped<NotificationService>()
            .BuildServiceProvider();
        var notificationService = serviceProvider.
GetRequiredService<NotificationService>();
        notificationService.Notify("Hello, World!");
    }
}

In this example, we define an IMessageService interface and an EmailService class that
implements it. The NotificationService class depends on IMessageService, and its
dependency is injected through the constructor. In the Main method, we set up the DI container
using the ServiceCollection class. We register EmailService as the implementation
of IMessageService and NotificationService with the container. We then resolve
an instance of NotificationService from the container using GetRequiredService.
Finally, we use NotificationService to send a message, and it internally uses the injected
IMessageService to perform the action.

This example demonstrates the basics of how IoC and DI work in a .NET Core application. The
actual implementation details might vary based on the specific requirements and architecture of
your application.

Next up, we will look at how to limit an object’s knowledge to knowing only about its close relatives using
the Law of Demeter. This will help us to write a clean C# code that avoids the use of navigation trains.

The Law of Demeter
The Law of Demeter aims to remove navigation trains (dot counting), and it also aims to provide good
encapsulation with loosely coupled code.

Classes, Objects, and Data Structures82

A method that understands a navigation train breaks the Law of Demeter. For example, have a look
at the following code:

report.Database.Connection.Open(); // Breaks the Law of Demeter.

The line of code report.Database.Connection.Open(); is used to open a database
connection to run a report.

The Law of Demeter is a software design principle that states that an object should not have direct
knowledge of the internal structure or implementation of other objects. This means that a method
should only call methods of its own class or of objects that it owns, not of objects that are obtained
through other objects.

In this case, the report object is calling the Open() method of the Connection object, which
is obtained through the Database object. This violates the Law of Demeter because the report
object is directly accessing the internal structure of the Database object, which is not its own
property or method.

To adhere to the Law of Demeter, the code could be refactored to something like this:

var connection = report.GetDatabaseConnection();

connection.Open();

In this refactored code, the report object does not directly access the Connection object, but instead
calls a GetDatabaseConnection() method to obtain the Connection object. The Open()
method is then called on the connection object directly, rather than through the report object.

This makes the code more maintainable and easier to change in the future since any changes to the
internal structure of the Database object will not affect the report object. Additionally, it improves
the encapsulation of the Database object and promotes better separation of concerns in the code.

This line of code chains navigation as separated by the dots. You can see there are four dots. These
dots should be kept to a minimum.

Each unit of code should have a limited amount of knowledge. That knowledge should only be of
relevant code that is closely related. With the Law of Demeter, you must tell and not ask. Using this
law, you may only call methods of objects that are one or more of the following:

•	 Passed as arguments

•	 Created locally

•	 Instance variables

•	 Globals

Implementing the Law of Demeter can be difficult, but there are advantages to telling rather than
asking. One such benefit is the decoupling of your code.

The Law of Demeter 83

It is good to see a bad example that breaks the Law of Demeter, along with one that obeys the Law of
Demeter, so we will see these in the following sections.

A good and a bad example (chaining) of the Law of Demeter

In the good example, we have the report instance variable. On the report variable object instance, the
method to open the connection is called. This does not break the law.

The following code is a Connection class with a method that opens a connection:

namespace CH3.LawOfDemeter
{
    public class Connection
    {
        public void Open()
        {
            // ... implementation ...
        }
    }
}

The Database class creates a new Connection object and opens a connection:

namespace CH3.LawOfDemeter
{
    public class Database
    {
        public Database()
        {
            Connection = new Connection();
        }

        public Connection Connection { get; set; }

        public void OpenConnection()
        {
            Connection.Open();
        }
    }
}

In the Report class, a Database object is instantiated and then a connection to the database is opened:

namespace CH3.LawOfDemeter
{

Classes, Objects, and Data Structures84

    public class Report
    {
        public Report()
        {
            Database = new Database();
        }

        public Database Database { get; set; }

        public void OpenConnection()
        {
            Database.OpenConnection();
        }
    }
}

So far, we have seen an example of good code that obeys the Law of Demeter. But the following is
code that breaks this law.

In the Example class, the Law of Demeter is broken because we introduce method chaining, as
in report.Database.Connection.Open():

namespace CH3.LawOfDemeter
{
    public class Example
    {
        public void BadExample_Chaining()
        {
            var report = new Report();
            report.Database.Connection.Open();
        }

        public void GoodExample()
        {
            var report = new Report();
            report.OpenConnection();
        }
    }
}

In this bad example, the Database getter is called on the report instance variable. This is acceptable.
But then a call is made to the Connection getter that returns a different object. This breaks the Law
of Demeter, as does the final call to open the connection.

Let’s look at immutable objects and data structures next.

Immutable objects and data structures 85

Immutable objects and data structures
In C#, setting an object to static does not make it immutable. A static object is one that belongs to
the class itself, rather than to any instance of the class. It can be accessed using the class name rather
than an instance name, and there is only one instance of it shared among all instances of the class.

The immutability of an object depends on its properties and methods. An immutable object is one
whose state cannot be changed after it is created. This means that its properties cannot be modified,
and any operations that are performed on it return a new instance of the object rather than modifying
the existing instance.

To make an object immutable in C#, you can follow these guidelines:

1.	 Make all fields private and read-only.

2.	 Only allow initialization of the object through a constructor.

3.	 Do not provide any public setters for the object’s properties.

4.	 Ensure that any operations performed on the object return a new instance of the object rather
than modifying the existing instance.

Here is an example of an immutable class in C#:

public class ImmutableClass
{
    private readonly int _value;

    public ImmutableClass(int value)
    {
        _value = value;
    }

    public int Value => _value;

    public ImmutableClass Add(int value)
    {
        return new ImmutableClass(_value + value);
    }
}

In this example, the class has a private readonly field, _value, which can only be set through the
constructor. The class also has a public property, Value, that exposes the value of the field but does
not provide a public setter. Finally, the class has an Add method that returns a new instance of the
class with a modified value, rather than modifying the existing instance.

Classes, Objects, and Data Structures86

By following these guidelines, we can create immutable objects in C# that cannot be modified after
they are created, regardless of whether they are static or not.

Figure 3.3: Immutable Objects

Let’s look at this diagram in more detail:

•	 The ImmutableClass class is represented by a rectangle

•	 The class has a private _value field of the int type

•	 The class has an ImmutableClass(int value) constructor for initializing _value

•	 The class has a Value property of the int type

•	 The class has a method called Add(int value) that returns a new ImmutableClass object

Under the Objects section, you can create multiple instances of ImmutableClass:

•	 obj1: ImmutableClass

•	 obj2: ImmutableClass

These objects represent instances of the ImmutableClass class. You can use them to demonstrate
how the Add method works, as in this example:

obj1 = new ImmutableClass(5);
obj2 = obj1.Add(3);

This creates two objects: obj1 with a value of 5 and obj2 with a value of 8 (the result of adding 5
and 3). The objects remain immutable, so obj1 and obj2 have distinct values and do not change
the state of each other when the Add method is called.

Immutable objects and data structures 87

Using records to create immutable objects

Records were introduced in C# 9.0, which is part of the .NET 5 release. C# 9.0 is closely associated
with .NET 5, as both were released together in November 2020.

Records are a new reference type in C# that is designed to make it easier to work with immutable
data. They provide a concise syntax for creating immutable objects, reducing the amount of boilerplate
code that developers need to write. In addition to immutability, records come with other features that
make them suitable for use in scenarios where value semantics are desired.

Here are some key features of records in C#:

•	 Immutable by default: Records are immutable by default, meaning that their properties cannot
be modified after the object is created. This helps in creating objects with a predictable state
and reduces the chances of introducing bugs related to mutable state.

•	 Value equality: Records automatically implement value equality. The compiler generates the
Equals and GetHashCode methods based on the properties of the record. This makes
it easy to compare records for equality without having to explicitly override these methods.

•	 Deconstruction: Records support deconstruction, allowing you to easily break down a record
into its individual components. This can be useful in scenarios such as pattern matching or
when you need to extract values from a record.

•	 with expressions: Records come with a with expression that allows you to create a new
instance of the record with modified values. This is helpful for creating modified copies of
immutable objects without changing the original instance.

Here’s an example of a simple record in C#:

public record Person
{
    public string FirstName { get; init; }
    public string LastName { get; init; }
}

In this example, the init accessor is used to set the properties during object initialization, but they
cannot be modified afterward.

Records are ideal for creating immutable objects due to their concise syntax, built-in support for
immutability, value equality, and other features that promote good practices in managing and working
with data. They contribute to more readable and maintainable code, especially in scenarios where
data is expected to remain constant once it’s set.

Now we have seen how easy it is to write immutable objects and data structures, we will look at data
and methods in objects.

Classes, Objects, and Data Structures88

Objects should hide data and expose methods
The state of your object is stored in member variables. These member variables are pieces of data.
Data should not be directly accessible. You should only provide access to data via exposed methods
and properties.

Why should you hide your data and expose your methods?

Hiding data and exposing methods is known in the OOP world as encapsulation. Encapsulation hides
the inner workings of a class from the outside world. This makes it easy to be able to change value types
without breaking existing implementations that rely on the class. Data can be made read/writable,
writable, or read-only providing more flexibility to you regarding data access and usage. You can also
validate input and prevent data from receiving invalid values. Encapsulating also makes testing your
classes much easier, and you can make your classes more reusable and extendable.

Let’s look at an example.

An example of encapsulation

The following code example shows an encapsulated class. The Car object is mutable. It has properties
that get and set the data values once they have been initialized by the constructor. The constructor
and the set properties perform the validation of the parameter arguments. If the value is invalid, an
invalid argument exception is thrown, otherwise, the value is passed back and the data value is set:

using System;
namespace CH3.Encapsulation
{
    public class Car
    {
        private string _make;
        private string _model;
        private int _year;

        public Car(string make, string model, int year)
        {
            Make = ValidateMake(make);
            Model = ValidateModel(model);
            Year = ValidateYear(year);
        }

        private string ValidateMake(string make)
        {
            if (make.Length >= 3)
                return make;
            throw new ArgumentException("Make must be three characters

Data structures should expose data and have no methods 89

or more.");
        }

        public string Make
        {
            get { return _make; }
            set { _make = ValidateMake(value); }
        }

        // Other methods and properties omitted for brevity.
    }
}

Note
Constructors can use different validation to setter properties. Therefore, it is a good idea to set
the property in the constructor and not the field. That way, you can ensure correct validation
takes place.

The benefit of the preceding code is that if you need to change the validation for the code that gets or
sets the data values, you can do so without breaking the implementation.

Data structures should expose data and have no methods
The idea that data structures should expose data and have no methods is related to the concept of
separation of concerns in software design. The primary concern of a data structure is to hold and
organize data, while the primary concern of methods is to perform operations on that data.

Here are a few examples of data structures that expose data and have no methods:

•	 Array: An array is a simple data structure that holds a collection of elements of the same type.
Arrays do not have any methods and are primarily used to store and retrieve data. Here is an
example of an array of integers:

int[] myArray = { 1, 2, 3, 4, 5 };

•	 Tuple: A tuple is a data structure that holds a collection of values of different types. Tuples do
not have any methods and are primarily used to group related data together. Here is an example
of a tuple that holds a name and an age:

var person = ("John", 30);

Classes, Objects, and Data Structures90

•	 Struct: A struct is a value type that holds a collection of related data fields. Structs can have
methods, but it is generally recommended to avoid adding methods to them. Here is an example
of a struct that holds information about a point in a 2D coordinate system:

struct Point
{
    public int X;
    public int Y;
}

In all of these examples, the primary purpose of the data structure is to hold and organize data, and it
is not necessary or appropriate to add methods to them. By keeping the concerns of data and methods
separate, we can create simpler, more focused, and maintainable code.

The SOLID software methodology
SOLID is an acronym that represents a set of five design principles for writing maintainable and
scalable software. These principles were introduced by Robert C. Martin and are widely used in OOP.
Let’s take a brief look at each of these SOLID principles.

SRP

A class should have only one reason to change, meaning that it should have only one responsibility.

The following code is an example of a wrong implementation that violates the SRP:

class Report
{
    public void GenerateReport() { /* ... */ }
    public void SaveToFile() { /* ... */ }
}

This class performs the two responsibilities of generating a report and saving it to a file. Here is the
correct implementation:

class Report
{
    public void GenerateReport() { /* ... */ }
}
class ReportSaver
{
    public void SaveToFile(Report report) { /* ... */ }
}

As you can see, our correct implementation of the SRP farms out the generating of the report and
saving it to a file to two separate files with single responsibilities.

The SOLID software methodology 91

Open/closed principle (OCP)

Software entities (classes, modules, and functions) should be open for extension but closed for modification.

Here is a wrong implementation that violates the OCP:

class Rectangle
{
    public double Width { get; set; }
    public double Height { get; set; }
}
class AreaCalculator
{
    public double CalculateArea(Rectangle rectangle)
    {
        return rectangle.Width * rectangle.Height;
    }
}

It is clear to see how the AreaCalculator class breaks the OCP with its CalculateArea
method that takes the Rectangle object as a parameter and calculates its area. Let’s see the correct
implementation that does not violate the OCP:

abstract class Shape
{
    public abstract double CalculateArea();
}
class Rectangle : Shape
{
    public double Width { get; set; }
    public double Height { get; set; }

    public override double CalculateArea()
    {
        return Width * Height;
    }
}

Here, we have an abstract Shape class that has an abstract method called CalculateArea. The
Rectangle class inherits the abstract Shape class and implements the CalculateArea method
respecting the OCP.

Liskov substitution principle (LSP)

Subtypes must be substitutable for their base types without altering the correctness of the program.

Classes, Objects, and Data Structures92

The following code violates the LSP:

class Bird
{
    public virtual void Fly() { /* ... */ }
}
class Penguin : Bird
{
    public override void Fly()
    {
        throw new InvalidOperationException("Penguins cannot fly.");
    }
}

The LSP states that objects of a superclass should be replaceable with objects of a subclass without
affecting the correctness of the program. In the given code, the Penguin class, which is a subclass
of Bird, violates the LSP.

The violation occurs because the Penguin class overrides the Fly method of the base class (Bird)
and throws an exception, indicating that penguins cannot fly. This behavior contradicts the expected
behavior of the base class, where the Fly method is declared as a virtual method but does not define
any specific behavior.

The LSP violation becomes apparent when you use an object of the Bird class (assuming it could be
an instance of Penguin as well) in a context where flying is expected without checking its actual type.
The code relying on the LSP may expect any bird to be able to fly based on the base class’s contract,
but if a Penguin is substituted, it will throw an exception, breaking the expected behavior.

In other words, the LSP violation occurs because the subclass (Penguin) introduces a behavior
(Fly, throwing an exception) that is not compatible with the behavior defined by the base class
(Bird). Subtypes should not alter the behavior of their base types in a way that breaks the contract
established by the base class.

Here is the correct implementation:

interface IFlyable
{
    void Fly();
}
class Bird : IFlyable
{
    public void Fly() { /* ... */ }
}
class Penguin : IFlyable
{

The SOLID software methodology 93

    public void Fly()
    {
        throw new InvalidOperationException("Penguins cannot fly.");
    }
}

We start with the IFlyable interface that defines a Fly method. Different birds will implement the
IFlyable interface and provide their own Fly implementation as some birds can fly and others,
such as penguins, cannot.

Interface segregation principle (ISP)

A class should not be forced to implement interfaces it does not use. Here is the wrong implementation
that breaks the ISP:

interface IWorker
{
    void Work();
    void TakeBreak();
}
class Manager : IWorker
{
    public void Work() { /* ... */ }
    public void TakeBreak() { /* ... */ }  // Manager may not need
this
}

The IWorker interface provides two methods, called Work and TakeBreak. However, some worker
types may not need to take a break, yet they are forced to implement the TakeBreak method. We
can clean this up so that the ISP is respected. Here is the correct implementation of the ISP:

interface IWorker
{
    void Work();
}
interface IBreakable
{
    void TakeBreak();
}
class Manager : IWorker, IBreakable
{
    public void Work() { /* ... */ }
    public void TakeBreak() { /* ... */ }
}

Classes, Objects, and Data Structures94

The IWorker interface has been split into two interfaces, called IWorker and IBreakable. Now,
different worker types can implement only the interfaces they require.

Dependency inversion principle (DIP)

High-level modules should not depend on low-level modules. Both should depend on abstractions.
Abstractions should not depend on details; details should depend on abstractions. The following
code violates the DIP:

class LightBulb
{
    public void TurnOn() { /* ... */ }
    public void TurnOff() { /* ... */ }
}
class Switch
{
    private LightBulb bulb;
    public Switch(LightBulb bulb)
    {
        this.bulb = bulb;
    }
    public void Toggle()
    {
        // This high-level module depends on a low-level module
directly
        if (bulb.IsOn)
            bulb.TurnOff();
        else
            bulb.TurnOn();
    }
}

As you can see, the Switch class is dependent upon the LightBulb class. We can fix this with
the code that follows:

interface ISwitchable
{
    void TurnOn();
    void TurnOff();
}
class LightBulb : ISwitchable
{
    public void TurnOn() { /* ... */ }
    public void TurnOff() { /* ... */ }

Summary 95

}
class Switch
{
    private ISwitchable device;
    public Switch(ISwitchable device)
    {
        this.device = device;
    }
    public void Toggle()
    {

if (device.IsOn)
            device.TurnOff();
        else
            device.TurnOn();
    }
}

We have an ISwitchable interface that provides methods for turning a device on and off. The
LightBulb class implements ISwitchable so that the bulb can be turned on and off. The Switch
class takes an ISwitchable device and is able to turn it on and off. In this implementation, we are
using abstractions and so respect the DIP.

By following these SOLID principles, you can create more maintainable, flexible, and scalable
sof﻿tware systems.

With this, we come to the end of the chapter, and we will now review what we’ve learned.

Summary
In this chapter, we learned about organizing our namespaces in folders and packages, and how good
organization can help to prevent namespace classes. We then moved on to classes and responsibilities
and looked at why classes should only have one responsibility. We also looked at cohesion and coupling
and why it is important to have high cohesion and low coupling.

Good documentation requires public members to be correctly commented on in documentation
tools, and we saw how to do this using XML comments. The importance of why you should design
for change was also discussed with basic examples of DI and IoC.

The Law of Demeter showed you how to not talk to strangers but only immediate friends, and how
to avoid chaining. Finally, we looked at objects and data structures, what they should hide, and what
they should make public.

Classes, Objects, and Data Structures96

In the next chapter, we will briefly cover functional programming in C# and how to write clean
methods that are small. We will also learn how to avoid having more than two parameters in our
methods, as methods with many parameters can become unwieldy. Plus, we will learn how to avoid
duplication, which can be a troublesome source of bugs when fixed in one location but still exist
elsewhere in your code.

Questions
1.	 How can we organize our classes in C#?

2.	 How many responsibilities should a class have?

3.	 How do you comment on your code for document generators?

4.	 What does cohesion mean?

5.	 What does coupling mean?

6.	 Should cohesion be high or low?

7.	 Should coupling be tight or loose?

8.	 What mechanisms are available that help you design for change?

9.	 What is DI?

10.	 What is IoC?

11.	 Name one benef﻿it of using immutable objects.

12.	 What should objects hide and show?

13.	 What should structures hide and show?

Further reading
•	 The Single Responsibility Principle by Robert C. Martin

•	 For more details regarding understanding the different kinds of cohesion and coupling, check
out https://www.geeksforgeeks.org/software-engineering-coupling-
and-cohesion/

•	 Many tutorials on IoC can be found at https://www.tutorialsteacher.com/ioc/

•	 Test Driven Development: By Example by Kent Beck

•	 Interface Oriented Design: With Patterns by Ken Pugh

https://www.geeksforgeeks.org/software-engineering-coupling-and-cohesion/
https://www.geeksforgeeks.org/software-engineering-coupling-and-cohesion/
https://www.tutorialsteacher.com/ioc/

4
Writing Clean Functions

Clean functions are methods that are small (they have two or fewer arguments) and avoid duplication.
The ideal method has no parameters and does not modify the program’s state. Small methods are less
prone to exceptions, so you will be writing much more robust code that benefits you in the long run
as you will have fewer bugs to fix.

Functional programming (FP) is a software coding methodology that treats computations as
the mathematical evaluation of computations. This chapter will teach you the benefits of treating
computations as the evaluation of mathematical functions in order to void changing an object’s state.

Large methods (also known as functions) can be unwieldy to read and prone to errors, so writing small
methods has its advantages. Hence, we will look at how large methods can be broken up into smaller
methods. In this chapter, we will cover FP in C# and how to write small, clean methods.

Constructors and methods with multiple parameters can become a real pain to work with, so we will
have to look for ways to work around and pass multiple parameters, as well as how to avoid using
more than two parameters. The main reason for reducing the number of parameters we have is that
they can become hard to read, be a source of irritation to fellow programmers, and cause visual stress
if there are enough of them. They can also be a sign that the method is trying to do too much or that
you need to consider refactoring your code.

In this chapter, we will cover the following topics:

•	 Understanding the difference between object-oriented programming (OOP) and FP

•	 Keeping methods small

•	 Avoiding duplication

•	 Avoiding multiple parameters

•	 Handling exceptions in FP

Writing Clean Functions98

By the time you have worked through this chapter, you will have the skills to do the following:

•	 Describe FP and apply it to your C# programming

•	 Write small and clean functions that are readable and don’t affect state

•	 Implement code that adheres to the Single Responsibility Principle (SRP)

•	 Implement correct exception handling in functional programs

Let’s get started!

Technical requirements
To follow along with this chapter, you will require the following:

•	 The latest version of Visual Studio Community Edition

•	 The source code, available at https://github.com/PacktPublishing/Clean-
Code-with-CSharp-Second-Edition/tree/main/CH04

Understanding the difference between OOP and FP
In this chapter, we will be discussing FP. Because most readers will be used to OOP, FP can feel rather
alien to them to begin with.

So, in this section, we will cover an example written first as an OOP program, and secondly as a
FP program.

Let’s consider a simple example where we model a basic shape, such as a rectangle, using both OOP
and FP approaches. We will start with the OOP code first:

class Rectangle
{
    public double Length { get; set; }
    public double Width { get; set; }

    // Constructor
    public Rectangle(double length, double width)
    {
        Length = length;
        Width = width;
    }
    public double CalculateArea()
    {
        return Length * Width;
    }

https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH04
https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH04

Understanding the difference between OOP and FP 99

}
class Program
{
    static void Main()
    {
        // Create a rectangle object
        Rectangle myRectangle = new Rectangle(5, 3);
        // Calculate and print the area
        Console.WriteLine("Area of the rectangle: " + myRectangle.
CalculateArea());
    }
}

Now, we’ll look at the FP version before we describe what’s going on:

static double CalculateArea(double length, double width)
{
    return length * width;
}
class Program
{
    static void Main()
    {
        // Use the function to calculate and print the area
        double length = 5;
        double width = 3;
        Console.WriteLine("Area of the rectangle: " +
CalculateArea(length, width));
    }
}

Explanation of the differences

To explain the differences between FP and OOP, let’s first look at OOP more closely:

1.	 Class definition:

	� OOP involves defining a class (in this case, Rectangle) to encapsulate properties (length
and width) and methods (for example, CalculateArea) that operate on the data.

2.	 Object instantiation:

	� Objects (instances of the class) are created to represent specific instances of the concept (a
specific rectangle with a particular length and width).

Writing Clean Functions100

3.	 State and behavior:

	� The class encapsulates both state (properties) and behavior (methods) in a single unit.

Now, let’s have a closer look at FP:

1.	 Function definition:

	� FP involves defining functions that take inputs and produce outputs without maintaining
any internal state.

2.	 Pure functions:

	� Functions in FP are “pure,” meaning they produce the same output for the same input and
have no side effects.

3.	 Data immutability:

	� FP typically relies on immutable data. In the example, the CalculateArea function
doesn’t modify any state; it just takes inputs and produces an output.

Now, let’s look at their key differences:

1.	 State handling:

	� OOP involves managing state through objects, while FP relies on immutable data and
pure functions.

2.	 Paradigm philosophy:

	� OOP emphasizes encapsulation, where data and behavior are bundled together, while FP
emphasizes the separation of concerns (SoC) and treating computation as the evaluation
of mathematical functions.

3.	 Mutability:

	� OOP allows for mutable state within objects, whereas FP prefers immutability to avoid
side effects.

Understanding and shifting between these paradigms requires a different mindset. OOP is more about
organizing code around objects and their interactions, while FP focuses on composing functions
and avoiding mutable state. The choice between them often depends on the problem at hand and the
preferences of the developer or team.

Understanding the difference between OOP and FP 101

Understanding why FP can lead to cleaner functions

FP and OOP are two different programming paradigms, each with its own strengths and weaknesses. While
both paradigms can be used to write clean and robust code, FP has certain features that can contribute
to cleaner and less error-prone functions compared to conventional OOP. Here are some reasons why:

1.	 Immutability:

	� In FP, immutability is often emphasized. Once a variable is assigned a value, it cannot be
changed. This helps prevent unintended side effects and makes the code more predictable.
In OOP, especially languages that allow mutable objects, unintended changes to object state
can lead to bugs that are harder to trace.

2.	 Pure functions:

	� FP encourages the use of pure functions—functions that have no side effects and always
produce the same output for the same input. Pure functions make it easier to reason about
code since they don’t depend on external state. In OOP, methods of objects often modify the
object’s state, introducing potential side effects and making it more challenging to predict
the behavior of a function.

3.	 Avoidance of shared state:

	� In FP, functions operate on their inputs without modifying external state. This reduces the
likelihood of shared mutable state between different parts of a program, minimizing the
chance of unexpected interactions. OOP often involves shared state between objects, which
can lead to complex interactions and bugs that are harder to track down.

4.	 Functional composition:

	� FP encourages composing functions by combining them to create more complex behavior.
This leads to smaller, more focused functions that are easier to understand and test. In OOP,
combining behavior often involves inheritance and method overriding, which can lead to
complex class hierarchies that are harder to maintain.

5.	 Concurrency and parallelism:

	� FP is often considered more suitable for concurrent and parallel programming because of
its emphasis on immutability and avoiding shared state. In OOP, managing shared mutable
state in a concurrent environment can be challenging and error-prone.

6.	 Type systems:

	� Many FP languages have strong type systems that can catch certain types of errors at compile
time. This helps prevent runtime errors that may occur due to type mismatches. While OOP
languages also have type systems, the emphasis on immutability and pure functions in FP
can reduce the likelihood of certain types of bugs.

Writing Clean Functions102

7.	 Easier testing:

	� Functions in FP are often easier to test since they are designed to be pure and stateless. In
OOP, testing can be more complex due to dependencies on shared state and the need to set
up object hierarchies for testing.

While FP has these advantages, it’s important to note that the effectiveness of a paradigm depends
on the problem at hand and the context in which it is applied. Both OOP and FP have their places in
modern software development, and a hybrid approach that leverages the strengths of both paradigms
is also common.

We will now move on to see how unclean methods negatively impact software.

Unclean methods and how they affect software
In C#, as in any programming language, there are certain types of methods that can be considered
“not clean” or problematic. These methods often exhibit characteristics that can lead to various issues
in code readability, maintainability, and robustness. Here are some common types of methods that
are not considered clean and the problems they can produce:

•	 Methods with high cyclomatic complexity:

	� Problem: Methods with high cyclomatic complexity contain a large number of branches,
conditions, and decision points. These methods tend to be hard to understand, debug,
and maintain.

	� Solution: Refactor complex methods into smaller, more focused functions and use techniques
such as switch statements or polymorphism to simplify control flow.

•	 Methods with too many parameters:

	� Problem: Methods that take a large number of parameters can be challenging to call correctly
and may lead to confusion and bugs.

	� Solution: Consider creating data transfer objects (DTOs) or using method overloads to
reduce the number of parameters. Use objects or structs to bundle related data.

•	 Methods with side effects:

	� Problem: Methods that modify global state or have side effects can make it difficult to reason
about the code’s behavior and lead to unexpected results.

	� Solution: Aim for pure functions that don’t modify state and clearly document when side
effects are necessary. Minimize global state modifications.

Unclean methods and how they affect software 103

•	 Methods with poor naming:

	� Problem: Methods with unclear or misleading names can lead to confusion and make the
code less readable.

	� Solution: Use meaningful and descriptive names that convey the purpose and functionality
of the method. Follow naming conventions to improve code consistency.

•	 Methods with excessive length:

	� Problem: Long methods can be challenging to read and understand, and they often indicate
that a method is doing too much.

	� Solution: Break down long methods into smaller, focused functions that each perform a
single task. This improves code modularity and readability.

•	 Methods with nested control structures:

	� Problem: Deeply nested if statements, loops, and switch cases can make code hard to
follow and lead to logic errors.

	� Solution: Refactor complex control structures into smaller, more understandable methods
or use early returns and guards to simplify conditional logic.

•	 Methods with duplicated code:

	� Problem: Repeated code in multiple methods can lead to maintenance nightmares because
changes must be made in multiple places.

	� Solution: Extract common functionality into separate methods or classes to eliminate
duplication and follow the Don’t Repeat Yourself (DRY) principle.

•	 Methods with poor error handling:

	� Problem: Methods that do not handle errors or exceptions gracefully can lead to application
crashes or unreliable behavior.

	� Solution: Implement robust error handling using try-catch blocks and provide meaningful
error messages or log information for debugging.

•	 Methods with magic numbers or hardcoded values:

	� Problem: Hardcoded values can make code less maintainable and harder to understand.

	� Solution: Replace magic numbers with named constants or configuration values to improve
code clarity and allow for easy changes.

Writing Clean Functions104

•	 Methods with poor documentation:

	� Problem: Methods lacking documentation can be challenging for other developers to
understand and use.

	� Solution: Document your methods with clear and concise comments or use tools such as
XML documentation comments to provide comprehensive documentation.

In summary, clean methods in C# are characterized by simplicity, modularity, good naming, and
adherence to best practices. Methods that violate these principles can lead to code that is difficult to
maintain, understand, and extend. By addressing these issues, you can make your C# code base more
maintainable and robust.

FP and clean methods
C# is indeed considered an OOP language, but it also supports FP concepts. FP is a programming
paradigm that treats computation as the evaluation of mathematical functions and avoids changing
state and mutable data. In C#, you can leverage FP techniques to write clean and efficient functions,
even within an OO context. Here’s how and why it’s important:

•	 Immutability:

	� In FP, immutability is a fundamental concept. Immutability means that once an object is
created, its state cannot be changed. You can use this concept in C# by creating immutable
data structures or objects. Immutability can make your code cleaner and more predictable
because you don’t need to worry about unexpected changes to your data.

•	 Pure functions:

	� Pure functions are functions that have no side effects and always return the same output for
the same input. Writing pure functions can make your code cleaner and more maintainable.
You can write pure functions in C# by avoiding global state and minimizing side effects.
This can lead to easier testing and debugging.

•	 Higher-order functions:

	� C# supports higher-order functions, which are functions that take other functions as arguments
or return functions as results. You can use higher-order functions to encapsulate behavior,
make your code more modular, and reduce repetition.

•	 Lambda expressions:

	� C# has lambda expressions, which are concise ways to define anonymous functions. These
can be used for various FP techniques, such as filtering, mapping, and reducing data. Lambda
expressions can make your code more readable and expressive.

FP examples 105

•	 Language-Integrated Query (LINQ):

	� LINQ is a powerful feature in C# that combines both FP and declarative programming
(DP). It allows you to query and manipulate data using a syntax similar to SQL. LINQ can
simplify complex data operations, making your code cleaner and more efficient.

•	 Functional composition:

	� In FP, you can compose functions together to build complex behavior from simpler functions.
C# allows you to create pipelines of functions using operators such as `=>` (lambda) and
`|>` (pipe). This can improve code readability and maintainability.

•	 Avoiding mutable state:

	� In FP, you aim to minimize or eliminate mutable state. C# provides constructs such as
readonly and const to help you create more predictable and clean code by reducing
the use of mutable variables.

The importance of employing FP in C# is to make your code cleaner, more predictable, and easier to
maintain. It can lead to the following benefits:

•	 Improved code readability: Functional code tends to be more concise and expressive

•	 Easier debugging and testing: Pure functions and immutability make it easier to isolate and
test parts of your code

•	 Reduced side effects: Minimizing side effects leads to more predictable behavior and easier
reasoning about your code

•	 Enhanced modularity: FP encourages breaking down complex problems into smaller,
composable units

•	 Better parallelism and concurrency: Functional code can be more suitable for parallel
processing, which is important in modern computing

While C# is primarily an OO language, its support for FP allows you to harness the benefits of both
paradigms, leading to cleaner and more maintainable code.

FP examples
The only thing that sets FP aside from other methods of programming is that functions do not modify data
or state. You will use FP in scenarios such as deep learning (DL), machine learning (ML), and artificial
intelligence (AI) when it is necessary to perform different sets of operations on the same set of data.

The LINQ syntax within .NET Framework is an example of FP. So, if you are wondering what FP
looks like, and if you have used LINQ before, then you have been subjected to FP and should know
what it looks like.

Writing Clean Functions106

Since FP is a deep subject and many books, courses, and videos exist on this topic, we will only touch
on the topic briefly in this chapter by looking at pure functions and immutable data.

A pure function is restricted to only operating on the data that is passed into it. As a result, the method
is predictable and avoids producing side effects. This benefits programmers because such methods
are easier to reason about and test.

Once an immutable data object or data structure has been initialized, the contained data values will
not be modified. Because the data is only set and not modified, you can easily reason about what the
data is, how it is set, and what the outcome of any operation will be, given the inputs. Immutable data is
also easier to test as you know what your inputs are and what outputs are expected. This makes writing
test cases much easier as you don’t have so many things to consider, such as object state. The benefit
of immutable objects and structures is that they are thread-safe. Thread-safe objects and structures
make for good DTOs that can be passed between threads.

But structs can still be mutable if they contain reference types. One way around this would be to make the
reference type immutable. C# 7.2 added support for readonly struct and ImmutableStruct.
So, even if our structures contain reference types, we can now use these new C# 7.2 constructs to make
structures with reference types immutable.

Now, let’s have a look at a pure function example. The only way to set the properties of an object is
via the constructor at construction time. The class is a Player class whose only job is to hold the
name of the player and their high score. A method is provided that updates the player’s high score:

public class Player
{
    public string PlayerName { get; }
    public long HighScore { get; }
    public Player(string playerName, long highScore)
    {
        PlayerName = playerName;
        HighScore = highScore;
    }
    Public Player UpdateHighScore(long highScore)
    {
        return new Player(PlayerName, highScore);
    }
}

Notice that the UpdateHighScore method does not update the HighScore property. Instead,
it instantiates and returns a new Player class by passing in the PlayerName variable, which is
already set in the class, and highScore, which is the method parameter. You have now seen a very
simple example of how to program your software without changing its state.

FP examples 107

Note
FP is a very large subject and requires a mind shift that can be very difficult for both procedural
and OO programmers. Since it is outside the scope of this book (to delve deep into the topic of FP),
you are actively encouraged to peruse the FP resources on offer from Packt Publishing for yourself.

Packt has some very good books and videos that specialize in teaching the top tiers of FP. You will
find links to some Packt FP resources at the end of this chapter, in the Further reading section.

Before we move on, we will look at some LINQ examples since LINQ is an example of FP in C#. It
will be good to have an example dataset. The following code builds a list of vendors and products.
We’ll start by writing the Product structure:

public struct Product
{
    public string Vendor { get; }
    public string ProductName { get; }
    public Product(string vendor, string productName)
    {
        Vendor = vendor;
        ProductName = productName;
    }
}

Now that we have our struct, we will add some sample data inside the GetProducts() method:

public static List<Product> GetProducts()
{
    return new List<Product>
    {
        new Product("Microsoft", "Microsoft Office"),
        new Product("Oracle", "Oracle Database"),
        new Product("IBM", "IBM DB2 Express"),
        new Product("IBM", "IBM DB2 Express"),
        new Product("Microsoft", "SQL Server 2017 Express"),
        new Product("Microsoft", "Visual Studio 2019 Community
Edition"),
        new Product("Oracle", "Oracle JDeveloper"),
        new Product("Microsoft", "Azure"),
        new Product("Microsoft", "Azure"),
        new Product("Microsoft", "Azure Stack"),
        new Product("Google", "Google Cloud Platform"),
        new Product("Amazon", "Amazon Web Services")
    };
}

Writing Clean Functions108

Finally, we can start to use LINQ on our list. In the preceding example, we got a distinct list of products
and ordered by the vendors’ names. Now we will print out the results:

class Program
{
    static void Main(string[] args)
    {
        var vendors = (from p in GetProducts()
        select p.Vendor)
        .Distinct()
        .OrderBy(x => x);
        foreach(var vendor in vendors)
        Console.WriteLine(vendor);
        Console.ReadKey();
    }
}

In the provided C# code, the LINQ statements are used to retrieve a distinct list of vendor names
from a collection of products and then order them alphabetically. The LINQ statements can be
considered pure functions in the context of this code because they do not have any side effects, and
their output is solely determined by their input. Here’s an explanation of how these LINQ statements
act as pure functions:

•	 from p in GetProducts() select p.Vendor: This LINQ statement queries the
GetProducts() method to retrieve the Vendor property from each product. It transforms
the input collection of products into a new sequence of vendor names. This transformation is
a pure function because it does not modify the input collection or have any side effects.

•	 .Distinct(): The Distinct() method filters the sequence of vendor names to ensure that
each vendor name appears only once in the output. This operation is also a pure function as it
does not alter the original sequence and produces a new sequence based on the distinct values.

•	 .OrderBy(x => x): The OrderBy method sorts the vendor names alphabetically. This
sorting operation is deterministic and does not modify the input sequence but produces a new
ordered sequence. It, too, is a pure function.

Overall, the LINQ statements in this code are pure functions because they take an input collection,
apply various transformations to it, and produce a new collection without causing any side effects or
altering the original data. This functional style of programming is one of the benefits of using LINQ
in C#, as it promotes immutability and helps ensure code clarity and maintainability.

Keeping methods small 109

In C#, you can create an immutable type by using the record keyword. Here’s an example of a simple
immutable record a person:

public record Person
{
    public string FirstName { get; set; }
    public string LastName { get; set;}
    public int Age { get; set;}
    public Person(string firstName, string lastName, int age)
    {
        FirstName = firstName;
        LastName = lastName;
        Age = age;
    }
}

In this example, the Person record has three properties: FirstName, LastName, and Age, and
it has a constructor to initialize these properties. The properties are read-only, meaning you can’t
change their values after the record is created.

Here’s how you can use the Person record:

Person person1 = new Person("John", "Doe", 30);
Person person2 = new Person("Jane", "Smith", 25);
Console.WriteLine(person1.FirstName); // Output: John
Console.WriteLine(person2.Age);      // Output: 25

Because the Person record is immutable, you can’t modify its properties directly. If you want to
create a new Person instance with different values, you would create a new object:

Person updatedPerson = person1 with { Age = 35 };

This creates a new Person record with the same FirstName and LastName properties as person1
but with an updated Age property.

One of the benefits of FP is that your methods are much smaller than the methods in other types
of programming. Next, we will take a look at why it is good to keep methods small, as well as the
techniques we can use, including FP.

Keeping methods small
As we’ve read before, while programming clean and readable code, it is important to keep the methods
small. Preferably, in the C# world, it is best to keep methods under 10 lines long. The perfect length
is no more than 10 lines.

Writing Clean Functions110

A good way to keep methods small is to consider if you should be trapping for errors or bubbling
them further up the call stack. With defensive programming, you can become a little too defensive,
and this can add to the amount of code you find yourself writing. Besides, methods that trap errors
will be longer than methods that don’t.

Let’s consider the following code, which can throw an ArgumentNullException exception:

public UpdateView(MyEntities context, DataItem dataItem)
{
    InitializeComponent();
    try
    {
        DataContext = this;
        _dataItem = dataItem;
        _context = context;
        nameTextBox.Text = _dataItem.Name;
        DescriptionTextBox.Text = _dataItem.Description;
    }
    catch (Exception ex)
    {
        Debug.WriteLine(ex);
        throw;
    }
}

In the preceding code, we can clearly see that there are two locations where an ArgumentNull-
Exception exception may be raised:

•	 The first line of code to potentially raise an ArgumentNullException exception is
nameTextBox.Text = _dataItem.Name;

•	 The second line of code that may potentially raise the same exception is DescriptionTextBox.
Text = _dataItem.Description;

We can see that the exception handler catches the exception when it occurs, writes it to the console,
and then simply throws it back up the stack.

Notice that, from a human reading perspective, there are eight lines of code that form the try-catch block.

You can completely replace the try-catch exception handling with a single line of text by writing
your own argument validator. To explain this, we will provide an example.

Let’s start by looking at the ArgumentValidator class. The purpose of this class is to throw an
ArgumentNullException exception with the name of the method that contains the null argument:

using System;
namespace CH04.Validators

Keeping methods small 111

{
    internal static class ArgumentValidator
    {
        public static void NotNull(
            string name,
            [ValidatedNotNull] object value
        )
        {
            if (value == null)
            throw new ArgumentNullException(name);
        }
    }
    [AttributeUsage(
        AttributeTargets.All,
        Inherited = false,
        AllowMultiple = true)
    ]
    internal sealed class ValidatedNotNullAttribute : Attribute
    {
    }
}

Now that we have our null validation class, we can perform a new way of validating parameters for
null values in our methods. So, let’s look at a simple example:

public ItemsUpdateView(
    Entities context,
    ItemsView itemView
)
{
    InitializeComponent();
    ArgumentValidator.NotNull("ItemsUpdateView", itemView);
    // ### implementation omitted ###
}

As you can clearly see, we have replaced the whole of the try-catch block with a one-liner at the
top of the method. When this validation detects a null argument, an ArgumentNullException
exception is thrown, preventing the code from continuing. This makes the code much easier to read
and also helps with debugging.

Writing Clean Functions112

Note
The NotNull method is called on the ArgumentValidator class to check the object is
not null and throw an exception if it is. But you can also provide other methods in this class
as well for testing string values, valid emails, and so on.

Now, we’ll look at formatting functions with indentation so that they are easy to read.

Indenting code
A very long method is hard to read and follow at the best of times, especially when you have to scroll
through the method many times to get to the bottom of it. However, having to do that with methods
that are not properly formatted with the correct levels of indentation can be a real nightmare.

Fortunately, Visual Studio is good at taking care of this. However, arguments among teammates on
the matter of indentation and whether it should be tabs or spaces, and if spaces, how many spaces,
can erupt from time to time. That’s why the team needs to agree on a coding style and stick to it.
The code standard agreed upon can be implemented in a linting tool such as StyleCop, SonarLint,
dotnet-format, or ReSharper. Again, the team will need to agree on the standard tool used for linting.

If you ever encounter any method code that is poorly formatted, then make it your own responsibility,
as a professional coder, to tidy the code up before you do anything else. Any code between braces is
known as a code block. Code within a code block should be indented by one level. Code blocks within
code blocks should also be indented by one level, as shown in the following example:

public Student Find(List<Student> list, int id)
{
    Student r = null;
    foreach (var i in list)
    {
        if (i.Id == id)
            r = i;
    }
    return r;
}

The preceding example demonstrates bad indentation and also bad loop programming. Here, you
can see that a list of students is being searched in order to find and return a student with the specified
ID that was passed in as a parameter.

Breaking out of loops 113

Breaking out of loops
What annoys some programmers and reduces the performance of the application is that the loop in
the preceding code continues, even when the student has been found. We can improve the indentation
and performance of the preceding code as follows:

public Student Find(List<Student> list, int id)
{
    Student r = null;
    foreach (var i in list)
    {
        if (i.Id == id)
        {
            r = i;
            break;
        }
    }
    return r;
}

In the preceding code, we have improved the formatting and made sure that the code is properly
indented. We’ve added a break statement to the for loop so that the foreach loop is terminated
when a match is found.

Not only is the code now more readable, but it also performs much better. Imagine that the code is
being run against a university with 73,000 students on campus and via distance learning. Consider
that if the student matches the ID that is first in the list, then without the break statement, the code
will have to run 72,999 unnecessary computations. You can see how much of a difference the break
statement makes to the performance of the preceding code.

We have left the return value in its original location as the compiler could complain that not all code
paths return a value. This is also why we added the break statement. It is clear that proper indentation
improves the readability of the code, thus aiding the programmer’s understanding of it. This enables
the programmer to make any changes that they deem necessary.

Avoiding duplication
Code can be either DRY or WET. WET code stands for Write Every Time and is the opposite of DRY,
which stands for Don’t Repeat Yourself, as previously mentioned. The problem with WET code is
that it is the perfect candidate for bugs. Let’s say your test team or a customer finds a bug and reports
it to you. You fix the bug and pass it on, only for it to come back and bite you as many times as that
code is encountered within your computer program.

Writing Clean Functions114

Duplicate C# code can lead to increased maintenance costs. When the same code is replicated in
multiple places within a project, it becomes harder to make consistent updates and bug fixes. This
redundancy not only consumes more time but also introduces the risk of inconsistencies and errors.

For instance, consider the following code snippet:

public void CalculateTotalPrice()
{
    // Code to calculate the total price
}
public void CalculateDiscountedPrice()
{
    // Same code to calculate the discounted price
}

In this example, both CalculateTotalPrice and CalculateDiscountedPrice functions
contain identical logic for calculating prices. Any change required in this logic must be made in multiple
places, which increases the likelihood of introducing errors and makes the code base more difficult
to maintain. Both methods could be replaced with a single method called CalculatePrice().

Now, we DRY our WET code by removing duplication. One way we can do this is by extracting the
code and putting it into a method and then centralizing the method in such a way that it is accessible
to all areas of the computer program that need it.

Time for an example. Imagine that you have a collection of expense items that consist of Name and
Amount properties. Now, consider having to get the decimal amount for an expense item by name.

Say you had to do this 100 times. For this, you could write the following code:

var amount = ViewModel
.ExpenseLines
.Where(e => e.Name.Equals("Life Insurance"))
.FirstOrDefault()
.Amount;

There is no reason why you can’t write that same code 100 times. But there is a way to write it only
once, thus reducing the size of your code base and making you more productive. Let’s have a look at
how we can do this:

public decimal GetValueByName(string name)
{
    return ViewModel
    .ExpenseLines
    .Where(e => e.Name.Equals(name))
    .FirstOrDefault()
    .Amount;

Avoiding multiple parameters 115

To extract the required value from the ExpenseLines collection within your ViewModel class,
all you have to do is pass the name of the value you require into the GetValueName(string
name) method, as shown in the following code:

var amount = GetValueByName("Life Insurance");

That one line of code is very readable, and the lines of code to get the value are contained in a single
method. So, if the method needs to be changed for whatever reason (such as a bug fix), you only have
to modify the code in one place.

You can create an extension method for the ViewModel class to simplify the code. Here’s how you
can do it:

public static class ViewModelExtensions
{
    public static decimal GetAmountByName(this ViewModel, string name)
    {
        return viewModel.ExpenseLines
            .FirstOrDefault(e => e.Name.Equals(name))
            ?.Amount ?? 0m;
    }
}

In this code, we define an extension method called GetAmountByName for the ViewModel class.
It takes a name parameter and searches for the first ExpenseLine instance with a matching name.
If it finds a match, it returns the Amount value of that ExpenseLine instance. If no matching
ExpenseLine is found, it returns 0 as a default value.

Now, you can use this extension method like this:

var viewModel = new ViewModel(); // Initialize your ViewModel instance
var amount = viewModel.GetAmountByName("Life Insurance");

This approach makes the code cleaner and more concise by encapsulating the logic within the
ViewModelExtensions class and using a fluent syntax to access the amount based on the name.

The next logical step to writing good functions is to have as few parameters as possible. In the next
section, we’ll look at why we should have no more than two parameters, as well as how to work with
just parameters, even if we need plenty more.

Avoiding multiple parameters
In this section, we’ll be looking at niladic, monadic, dyadic, triadic, and polyadic methods and how
we can avoid using multiple parameters.

Writing Clean Functions116

Niladic methods are the ideal type of methods in C#. Such methods have no parameters (also known
as arguments). Monadic methods only have one parameter. Dyadic methods have two parameters.
Triadic methods have three parameters. Methods that have more than three parameters are known
as polyadic methods. You should aim to keep the number of parameters to a minimum (preferably
less than three).

In the ideal world of C# programming, you should do your best to avoid triadic and polyadic methods.
The reason for this is not because it is bad programming but because it makes your code easier to
read and understand. Methods with lots of parameters can cause visual stress to programmers and
can also be a source of irritation. IntelliSense can also be difficult to read and understand as you add
more parameters.

Let’s look at a bad example of a polyadic method that updates a user’s account information:

public void UpdateUserInfo(int id, string username, string firstName,
string lastName, string addressLine1, string addressLine2, string
addressLine3, string addressLine3, string addressLine4, string city,
string postcode, string region, string country, string homePhone,
string workPhone, string mobilePhone, string personalEmail, string
workEmail, string notes)
{
    // ### implementation omitted ###
}

As shown by the UpdateUserInfo method, the code is horrible to read. How can we modify the
method so that it transforms from a polyadic method into a monadic method? The answer is simple
– we pass in a UserInfo object. First of all, before we modify the method, let’s take a look at our
UserInfo class:

public class UserInfo
{
    public int Id { get;set; }
    public string Username { get; set; }
    public string FirstName { get; set; }
    public string LastName { get; set; }
    public string AddressLine1 { get; set; }
    public string AddressLine2 { get; set; }
    public string AddressLine3 { get; set; }
    public string AddressLine4 { get; set; }
    public string City { get; set; }
    public string Region { get; set; }
    public string Country { get; set; }
    public string HomePhone { get; set; }
    public string WorkPhone { get; set; }
    public string MobilePhone { get; set; }
    public string PersonalEmail { get; set; }

Implementing the SRP 117

    public string WorkEmail { get; set; }
    public string Notes { get; set; }
}

We now have a class that contains all the information we need to pass into the UpdateUserInfo
method. The UpdateUserInfo method can now be transformed from a polyadic method into a
monadic method, as follows:

public void UpdateUserInfo(UserInfo userInfo)
{
    // ### implementation omitted ###
}

How much better does the preceding code look? It is smaller and much more readable. The rule of
thumb should be to have less than three parameters, and ideally none. If your class is obeying the SRP,
then consider implementing the parameter object pattern, as we have done here by replacing multiple
parameters with the single UserInfo parameter.

Note
Refactoring tools such as ReSharper help programmers with the automatic implementation of
the parameter object pattern as described here.

Implementing the SRP
All objects and methods that you write should, at most, have one responsibility and no more. Objects
can have multiple methods, but those methods, when combined, should all work toward the single
purpose of the object they belong to. Methods can call multiple methods, where each does different
things. But the method itself should only do one thing.

A method that knows and does far too much is known as a God method. Likewise, an object that
knows and does too much is known as a God object. God objects and methods are hard to read,
maintain, and debug. Such objects and methods can often have the same bug repeated many times.
People who are good at the programming craft will avoid God objects and God methods. Let’s look
at a method that is doing more than one thing:

public void SrpBrokenMethod(string folder, string filename, string
text, emailFrom, password, emailTo, subject, message, mediaType)
{
    var file = $"{folder}{filename}";
    File.WriteAllText(file, text);
    MailMessage message = new MailMessage();
    SmtpClient smtp = new SmtpClient();
    message.From = new MailAddress(emailFrom);

Writing Clean Functions118

    message.To.Add(new MailAddress(emailTo));
    message.Subject = subject;
    message.IsBodyHtml = true;
    message.Body = message;
    Attachment emailAttachment = new Attachment(file);
    emailAttachment.ContentDisposition.Inline = false;
    emailAttachment.ContentDisposition.DispositionType =
DispositionTypeNames.Attachment;
    emailAttachment.ContentType.MediaType = mediaType;
    emailAttachment.ContentType.Name = Path.GetFileName(filename);
    message.Attachments.Add(emailAttachment);
    smtp.Port = 587;
    smtp.Host = "smtp.gmail.com";
    smtp.EnableSsl = true;
    smtp.UseDefaultCredentials = false;
    smtp.Credentials = new NetworkCredential(emailFrom, password);
    smtp.DeliveryMethod = SmtpDeliveryMethod.Network;
    smtp.Send(message);
}

SrpBrokenMethod is clearly doing more than one thing, so it breaks the SRP. We will now break
this method down into a number of smaller methods that only do one thing. We will also address the
issue of the polyadic nature of the method in that it has more than two parameters.

Before we begin to break down the method into smaller methods that do only one thing, we need to look at all
the actions that the method is performing. The method starts by writing text to a file. It then creates an email
message, assigns an attachment, and finally sends the email. So, for this, we need methods for the following:

•	 Write text to file

•	 Create an email message

•	 Add an email attachment

•	 Send email

Looking at the current method, we have four parameters that are passed into it for writing text to a file:

•	 One for the folder

•	 One for the filename

•	 One for the text

•	 One for the media type

Implementing the SRP 119

The folder and filename can be combined into a single parameter called filename. If filename
and folder are two separate variables that are used inside the calling code, then they can be passed
into the method as a single interpolated string, such as $"{folder}{filename}".

As for the media type, this could be privately set inside a struct during construction time. We could
use that struct to set the properties we need so that we can pass the struct in with the three properties
as a single parameter. Let’s look at the code that accomplishes this:

public struct TextFileData
{
    public string FileName { get; private set; }
    public string Text { get; private set; }
    public MimeType { get; }
    public TextFileData(string filename, string text)
    {
        Text = text;
        MimeType = MimeType.TextPlain;
        FileName = $"{filename}-{GetFileTimestamp()}";
 }
 public void SaveTextFile()
 {
        File.WriteAllText(FileName, Text);
 }
 private static string GetFileTimestamp()
 {
        var year = DateTime.Now.Year;
        var month = DateTime.Now.Month;
        var day = DateTime.Now.Day;
        var hour = DateTime.Now.Hour;
        var minutes = DateTime.Now.Minute;
        var seconds = DateTime.Now.Second;
        var milliseconds = DateTime.Now.Millisecond;
        return $"{year}{month}{day}@{hour}{minutes}{seconds}
{milliseconds}";
    }
}

You can reduce the number of variables by directly using ToString on DateTime.Now and
formatting it as needed. Here’s the revised code:

private static string GetFileTimestamp()
{
    return DateTime.Now.ToString("yyyyMMdd@HHmmssfff");
}

Writing Clean Functions120

This code uses a single call to DateTime.Now and formats the date and time components according
to your desired pattern.

The TextFileData constructor ensures that the FileName value is unique by calling the
GetFileTimestamp() method and appending it to the end of FileName. To save the text
file, we call the SaveTextFile()method. Notice that MimeType is set internally and is set
to MimeType.TextPlain.

We could have simply hardcoded MimeType as MimeType = "text/plain";, but the advantage
of using an enum value is that the code is reusable, with the added benefit of you not having to
remember the text for a specific MimeType instance or look it up on the internet. Now, we’ll code
enum and add a description to the enum value:

[Flags]
public enum MimeType
{
    [Description("text/plain")]
    TextPlain
}

Well, we’ve got our enum value, but now we need a way to extract the description so that it can be
easily assigned to a variable. Therefore, we will create an extension class that will enable us to get the
description of an enum value. This enables us to set MimeType, as follows:

MimeType = MimeType.TextPlain;

Without the extension method, the value of MimeType would be 0. But with the extension method,
the value of MimeType is "text/plain". You can now reuse this extension in other projects and
build it up as you require.

The next class we will write is the Smtp class, whose responsibility it is to send an email via the
SMTP protocol:

public class Smtp
{
    private readonly SmtpClient _smtp;
    public Smtp(Credential credential)
    {
        _smtp = new SmtpClient
        {
            Port = 587,
            Host = "smtp.gmail.com",
            EnableSsl = true,
            UseDefaultCredentials = false,
            Credentials = new NetworkCredential(credential.
EmailAddress, credential.Password),

Implementing the SRP 121

            DeliveryMethod = SmtpDeliveryMethod.Network
        };
    }
    public void SendMessage(MailMessage mailMessage)
    {
        _smtp.Send(mailMessage);
    }
}

The Smtp class has a constructor that takes a single parameter of the Credential type. This
credential is used to log in to the email server. The server is configured in the constructor. When the
SendMessage(MailMessage mailMessage) method is called, the message is sent.

Let’s write a DemoWorker class that splits the work into different methods:

public class DemoWorker
{
    TextFileData _textFileData;
    public void DoWork()
    {
    SaveTextFile();
    SendEmail();
    }
    public void SendEmail()
    {
        Smtp smtp = new Smtp(new Credential("fakegmail@gmail.com",
"fakeP@55w0rd"));
        smtp.SendMessage(GetMailMessage());
    }
    private MailMessage GetMailMessage()
    {
        var msg = new MailMessage();
        msg.From = new MailAddress("fakegmail@gmail.com");
        msg.To.Add(new MailAddress("fakehotmail@hotmail.com"));
        msg.Subject = "Some subject";
        msg.IsBodyHtml = true;
        msg.Body = "Hello World!";
        msg.Attachments.Add(GetAttachment());
        return msg;
    }
    private Attachment GetAttachment()
    {
        var attachment = new Attachment(_textFileData.FileName);

Writing Clean Functions122

        attachment.ContentDisposition.Inline = false;
        attachment.ContentDisposition.DispositionType =
DispositionTypeNames.Attachment;
        attachment.ContentType.MediaType = MimeType.TextPlain.
Description();
        attachment.ContentType.Name = Path.GetFileName(_textFileData.
FileName);
        return attachment;
    }
    private void SaveTextFile()
    {
        _textFileData = new TextFileData($"{Environment.SpecialFolder.
MyDocuments}attachment", "Here is some demo text!");
        _textFileData.SaveTextFile();
    }
}

The DemoWorker class shows a much cleaner version of sending an email message. The main method
responsible for saving an attachment and sending it as an attachment via email is called DoWork().
This method only contains two lines of code. The first line calls the SaveTextFile() method,
while the second line calls the SendEmail() method.

The SaveTextFile() method creates a new TextFileData struct and passes in the filename
and some text. It then calls the SaveTextFile() method in the TextFileData struct, which
is responsible for saving the text to the file specified.

The SendEmail() method creates a new Smtp class. The Smtp class has a Credential parameter,
while the Credential class has two string parameters for email address and password. The email
and password are used to log in to the SMTP server. Once the SMTP server has been created, the
SendMessage(MailMessage mailMessage) method is called.

This method requires a MailMessage object to be passed in. So, we have a method
called GetMailMethod() that builds a MailMessage object that is then passed into the
SendMessage(MailMessage mailMessage) method. GetMailMethod() adds an
attachment to MailMessage by calling the GetAttachment() method.

As you can see from these modifications, our code is now more compact and readable. That is the
key to good quality code that is easy to modify and maintain: it must be easy to read and understand.
That is why it is important for your methods to be small and clean with as few parameters as possible.

Does your method break the SRP? If it does, you should consider breaking the method up into as
many methods as there are responsibilities.

Next, we will look at handling exceptions in FP.

Handling exceptions in FP 123

Handling exceptions in FP
In FP, it is common to handle errors and exceptions using monads, such as the Option or Either
monad. These monads allow for more declarative and composable error handling, as opposed to
imperative try-catch blocks.

You will need to add the LanguageExt.Core NuGet package and add the following using statements:

using LanguageExt;
using static LanguageExt.Prelude;

Here is an example of using the Option monad in C# to handle exceptions:

internal class Program
{
    static void Main(string[] args)
    {
        Console.WriteLine("Hello, and welcome to the functional
programming world!");
        ExceptionHandlingUsingMonadSome();
    }
    public static bool IsValidInteger(string input)
    {
        return input is { } && int.TryParse(input, out _);
    }
    public static int GetValidIntegerFromUser(string message)
    {
        int result = 0;
        bool validInput = false;
        while (!validInput)
        {
            Console.Write(message);
            string input = Console.ReadLine();
            if (int.TryParse(input, out result))
            {
                validInput = true;
            }
            else
            {
                Console.WriteLine("Invalid input. Please enter a valid
integer.");
            }
        }
        return result;
    }

Writing Clean Functions124

    public static Option<int> Divide(int x, int y)
    {
        return y == 0 ? None : Some(x / y);
    }
    public static void ExceptionHandlingUsingMonadSome()
    {
        int x = GetValidIntegerFromUser("Enter an integer: ");
        int y = GetValidIntegerFromUser("Enter another integer: ");
        var result = Divide(x, y);
        result.Match(Some: value => Console.WriteLine($"Result:
{value}"), None: () =>Console.WriteLine("Error: Division by zero"));
    }
}

In this example, the Divide method returns an Option<int> instance instead of throwing an
exception when attempting to divide by zero. The Option type has two possible values: Some(value)
and None. If the division is successful, the method returns Some(value) with the result. If the
division fails (that is, y is zero), the method returns None.

In the ExceptionHandlingUsingMonadSome method, the Divide method is called with
user input for x and y. The Match method is used to handle both possible cases of the Option
type. If result is Some(value), the result is printed to the console. If result is None, an error
message is printed instead.

Using monads for error handling in FP can lead to more concise and readable code, as well as improved
composability and reusability of error-handling logic.

Here’s an example of using the Either monad for error handling in C#:

public static Either<string, int> Divide(int x, int y)
{
 return y == 0 ? "Division by zero" : x / y;
}
public static void ExceptionHandlingUsingMonadEither()
{
    int x = GetValidIntegerFromUser("Enter an integer: ");
    int y = GetValidIntegerFromUser("Enter another integer: ");
    var result = Divide(x, y);
    result.Match(
        Some: value => Console.WriteLine($"Result: {value}"),
        None: () => Console.WriteLine("Error: Division by zero")
    );
}

Adding comments for readability 125

In this example, the Divide method returns an Either<string, int> instance instead of throwing
an exception when attempting to divide by zero. The Either type has two possible values: Right(value)
and Left(error). If the division is successful, the method returns Right(value) with the result. If
the division fails (that is, y is zero), the method returns Left(error) with an error message.

Note
Some and None are used as if Divide returns an Option type, but in this case, they are
used with the Either type, which is conceptually similar to Option but represents either a
success (Some) or an error (None).

In the ExceptionHandlingUsingMonadEither method, the Divide method is called with
user input for x and y. The Match method is used to handle both possible cases of the Either type.
If result is Right(value), the result is printed to the console. If result is Left(error),
an error message is printed instead.

Using the Either monad can be useful when you need to return more detailed error messages or
values that can’t be represented by a simple Option type. It can also be useful when you need to
chain together multiple operations that may fail in different ways, as the Either type can be used
to propagate errors through a computation.

Adding comments for readability
Comments play a crucial role in enhancing the readability and maintainability of your code. They
provide information about the purpose, functionality, and usage of your methods. Here’s how to add
comments effectively.

XML documentation comments

In C#, XML documentation comments are used to provide structured and meaningful descriptions
of methods. These comments can be automatically generated as documentation for your code. Use
triple slashes (///) to create XML comments above the method declaration:

/// <summary>
/// Calculates the sum of two integers.
/// </summary>
/// <param name="a">The first integer.</param>
/// <param name="b">The second integer.</param>
/// <returns>The sum of the two integers.</returns>
public int Add(int a, int b)
{
    return a + b;
}

Writing Clean Functions126

By adding XML documentation comments, you help other developers understand how to use your
methods and provide useful information for code analysis tools.

Inline comments

In addition to XML documentation comments, you can also use inline comments within your method
code to clarify specific parts of the implementation or important details. Here’s an example:

public void ProcessData()
{
    // Step 1: Load data from the database
    // ...

    // Step 2: Perform data processing
    // ...

    // Step 3: Save the processed data
    // ...
}

Variable declaration and memory management
Managing memory efficiently is crucial, especially in scenarios where your application deals with
memory-intensive operations. To write clean methods in such cases, follow the practices described next.

Declaring variables close to their usage

Declare variables as close as possible to their usage. This makes it easier for developers to understand
the purpose of a variable and its scope. Additionally, it can help with efficient memory management
by reducing the lifetime of variables. Here’s an example:

public void ProcessData()
{
    int total = 0;
    // Process a large data set
    for (int i = 0; i < data.Length; i++)
    {
        total += data[i];
    }
    // Use 'total' for further processing
    // ...
}

Applying security in methods, especially in APIs 127

Disposing of resources

When your method uses resources such as database connections, file handles, or any object that
implements IDisposable, it’s essential to dispose of these resources properly. Use a using
statement to ensure that resources are released when they are no longer needed:

public void ReadDataFromFile(string filePath)
{
    using (StreamReader reader = new StreamReader(filePath))
    {
        string data = reader.ReadToEnd();
        // Process data
    }
    // 'reader' is automatically disposed of at this point
}

Applying security in methods, especially in APIs
Security is a paramount concern when designing methods, particularly in the context of APIs that
may be exposed to external users. To enhance security, consider the following aspects.

Input validation

Always validate and sanitize input parameters to prevent security vulnerabilities such as injection
attacks. Ensure that user input is validated and sanitized before it is processed by your method. Here’s
an example:

public bool AuthenticateUser(string username, string password)
{
    if (string.IsNullOrEmpty(username) || string.
IsNullOrEmpty(password))
    {
        // Handle invalid input
        return false;
    }
    // Authenticate the user
    // ...
    return true;
}

Writing Clean Functions128

Authentication and authorization

Implement robust authentication and authorization mechanisms to ensure that only authorized users
can access sensitive methods or resources. Use authentication frameworks such as IdentityServer and
authorization attributes to control access. Here’s an example:

[Authorize(Roles = "Admin")]
public ActionResult DeleteUser(int userId)
{
    // Delete the user
    // ...
}

Protecting sensitive data

Encrypt sensitive data at rest and in transit to protect it from unauthorized access. Use encryption libraries
and secure communication protocols to ensure data security. Here’s an example of how to do this:

public string EncryptData(string data)
{
    // Use encryption libraries to encrypt 'data'
    // ...
    return encryptedData;
}

By addressing these considerations in your methods, you can write clean, secure, and maintainable
code in C#.

And that concludes this chapter on writing clean functions. It is now time to summarize what you
have learned and test your knowledge.

Summary
In this chapter, you have seen how FP can improve the safety of your code by not modifying the state,
which can give rise to bugs, especially in multithreaded applications. By keeping methods small with
meaningful names and no more than two parameters, you have seen how much cleaner your code is
and easier to read. You have also seen how we can remove duplication in our code and the benefits
of doing so. Code that is easy to read is easier to maintain and extend than code that is hard to read
and decipher. And you have seen how to handle exceptions in a functional way.

In the next chapter, you will learn how to use exception handling appropriately, write your own
custom C# exceptions that provide meaningful information, and write code that avoids raising
NullPointerException exceptions.

Questions 129

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 What do you call a method that has no parameters?

2.	 What do you call a method that has one parameter?

3.	 What do you call a method that has two parameters?

4.	 What do you call a method that has three parameters?

5.	 What do you call a method that has more than three parameters?

6.	 Which two method types should be avoided and why?

7.	 In layman’s terms, what is FP?

8.	 What are some advantages of FP?

9.	 Name one disadvantage of FP.

10.	 What is WET code, and why should it be avoided?

11.	 What is DRY code, and why should you use it?

12.	 How do you dry out WET code?

13.	 Why should methods be as small as possible?

14.	 How do you implement validation without having to implement try-catch blocks?

Further reading
Here are some additional resources so that you can delve deeper into the realms of C# FP:

•	 Functional C# by Wisnu Anggoro: https://www.packtpub.com/application-
development/functional-c. This book is devoted to C# FP and is a good place to start
if you want to know more.

•	 Functional Programming in C# by Jovan Popovic (MSFT): https://www.codeproject.
com/Articles/375166/Functional-programming-in-Csharp. This is an
in-depth article on functional C# programming. It contains diagrams and has a 5-star rating.

https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.codeproject.com/Articles/375166/Functional-programming-in-Csharp
https://www.codeproject.com/Articles/375166/Functional-programming-in-Csharp

5
Exception Handling

Exception handling is an important aspect of writing reliable, robust software. When a program
encounters an error, such as a division by zero, an invalid input, or something such as AccountID
not found, it can generate an exception that can be caught and handled by the program. However,
if exception handling is done poorly, it can lead to bugs, crashes, and other issues such as security
issues whereby exceptions reveal valuable information to attackers and fraudsters. In this chapter,
we’ll cover some best practices for clean exception handling in C#, including how to write code that
is readable, maintainable, and testable.

The topics covered are the following:

•	 Overview of exception handling in C#

•	 Principles of clean code and how they relate to exception handling

•	 Best practices for handling exceptions, including logging, using try-catch blocks, and
handling specific exceptions

•	 Creating custom exceptions and when to use them

•	 Avoiding common mistakes in exception handling

•	 Debugging techniques for handling exceptions

•	 Testing exception handling with unit tests, integration tests, and end-to-end tests

By the end of this chapter, you should be able to do the following:

•	 Understand the importance of clean exception handling and its impact on software reliability
and maintainability

•	 Apply principles of clean code to exception handling in C#

•	 Use best practices for handling exceptions, including logging and handling specific exceptions

•	 Create custom exceptions and know when to use them

•	 Avoid common mistakes in exception handling

Exception Handling132

•	 Debug exceptions effectively using Visual Studio tools

•	 Test exception handling with a variety of testing techniques, including unit tests, integration
tests, and end-to-end tests

Let’s look at the technical requirements to follow along with this chapter.

Technical requirements
To get the most from this chapter, you will need Visual Studio Community Edition. You can also
use Visual Studio Code (VS Code) if you prefer. The book’s source code for this chapter is located
at https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-
Edition/tree/main/CH05.

Overview of exception handling in C#
Exception handling is a fundamental aspect of writing robust software in C# (and in most programming
languages). It is the mechanism that allows you to handle errors and unexpected situations that occur
during program execution. When a C# program encounters an error, it throws an exception, which
is an object that represents the error.

In C#, there are two types of exceptions: System.Exception and System.
ApplicationException. Let’s look at what these are:

•	 System.Exception is the base class for all exceptions in the .NET Framework

•	 System.ApplicationException is the base class for all application-specific exceptions

try-catch

A try-catch block is used to catch and handle exceptions in C#. The try block contains the code
that might throw an exception, and the catch block contains the code that handles the exception.
The catch block takes an exception object as a parameter, which provides information about
the exception that was thrown. Here is an example of a simple try-catch block:

try
{
    // code that might throw an exception
}
catch (Exception ex)
{
    // code that handles the exception
}

https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH05
https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH05

Overview of exception handling in C# 133

You can also use multiple catch blocks to handle different types of exceptions. Here’s an example:

try
{
    // code that might throw an exception
}
catch (DivideByZeroException ex)
{
    // code that handles a DivideByZeroException
}
catch (IOException ex)
{
    // code that handles an IOException
}
catch (Exception ex)
{
    // code that handles all other exceptions
}

In this example, the catch blocks handle different types of exceptions. The first catch block handles
a DivideByZeroException exception, the second catch block handles an IOException
exception, and the third catch block handles all other types of exceptions.

Finally, it is important to handle exceptions properly in order to prevent bugs and crashes. This involves
logging exceptions, handling exceptions in a timely manner, and avoiding overly broad catch blocks.
Clean exception handling can lead to more reliable and maintainable code.

try-catch-finally

In addition to try and catch blocks, a C# try-catch block can also contain a finally block. The
finally block is executed after the try and catch blocks have completed, regardless of whether
an exception was thrown or not. You can also have a try-finally block without a catch block.

Here’s an example of a try-catch-finally block that includes a finally block:

try
{
    // code that might throw an exception
}
catch (Exception ex)
{
    // code that handles the exception
}
finally
{

Exception Handling134

    // code that always executes, regardless of whether an exception
was thrown or not
}

In this example, if an exception is thrown within the try block, the catch block will execute and
handle the exception. After the catch block is completed, the finally block will execute. If no
exception is thrown within the try block, the catch block will be skipped and the finally block
will still execute.

A finally block is useful for cleaning up resources that were allocated within a try block, such as
file handles or database connections. By placing the cleanup code in the finally block, you ensure
that it is always executed, even if an exception occurs.

Here’s an example of using a finally block to clean up a file handle:

FileStream fileStream = null;
try
{
    fileStream = new FileStream("file.txt", FileMode.Open);
    // code that uses the file stream
}
catch (Exception ex)
{
    // code that handles the exception
}
finally
{
    if (fileStream != null)
    {
        fileStream.Dispose();
    }
}

In this example, the finally block disposes of the FileStream object, which releases the file
handle and any other resources that were associated with it. By doing this in the finally block,
you ensure that the file handle is always released, even if an exception occurs.

You can rewrite the code using a using statement to ensure that the FileStream object is disposed
of properly. Here’s the updated code:

try
{
    using (FileStream fileStream = new FileStream("file.txt",
FileMode.Open))
    {
        // code that uses the file stream

Clean code exception-handling principles 135

    }
}
catch (Exception ex)
{
    // code that handles the exception
}

With the using statement, the FileStream object will be automatically disposed of when it goes
out of scope, which ensures proper resource management and eliminates the need for a separate
finally block to call Dispose.

In summary, the finally block in a try-catch-finally block is used to execute code that
should always run, regardless of whether an exception was thrown or not. It is useful for cleaning up
resources and ensuring that your program leaves no resources behind.

We’ll now look at clean code principles in exception handling.

Clean code exception-handling principles

Note
We have already learned about clean code principles. So, consider the following a quick refresher
on the topic.

Clean code principles are a set of guidelines that aim to help developers write code that is easy to
read, understand, and maintain. The principles are intended to make code more modular, reusable,
and testable. Here are a few examples of clean code principles:

•	 Single Responsibility Principle (SRP): A class should have only one reason to change.

•	 Open/Closed Principle (OCP): Software entities (classes, modules, functions, and so on)
should be open for extension but closed for modification.

•	 Dependency Inversion Principle (DIP): High-level modules should not depend on low-level
modules. Both should depend on abstractions.

When it comes to exception handling, clean code principles can help you write code that is more
robust and easier to maintain. Here are a few examples of how clean code principles can apply to
exception handling:

•	 SRP: In the context of custom exception classes and exception handling classes, these types of
classes should handle only one type of exception. This makes the code more modular and easier
to test. Additionally, methods and classes that handle exceptions should not also be responsible
for business logic or other tasks unrelated to exception handling.

Exception Handling136

•	 OCP: Code that handles exceptions should be open for extension but closed for modification.
This means that if you need to add new types of exceptions to your code, you should be able to
do so without modifying existing exception-handling code. One way to achieve this is to use
a strategy pattern to encapsulate the handling of each exception type in a separate class. The
usual strategy is to create a base exception for your own software/library so that you can catch
your base exception in the code, and if someone adds a new exception that derives from that
base class, you do not need to modify the existing code.

•	 DIP: Code that handles exceptions should not depend on concrete implementations of external
services (such as logging or notification systems). Instead, it should depend on abstractions
(such as interfaces) so that different implementations can be substituted without affecting the
exception-handling code.

In summary, clean code principles can help you write exception-handling code that is more modular,
extensible, and testable. By following these principles, you can make your code more maintainable
and less error-prone.

SRP

The SRP states that a class should have only one reason to change. When it comes to exception handling,
this means that each class or method should handle only one type of exception.

By following this principle, you can make your code more modular and easier to test. Additionally,
methods and classes that handle exceptions should not also be responsible for business logic or other
tasks unrelated to exception handling.

Here’s an example of how to use the SRP with exception handling in C#:

public class FileProcessor
{
    private ILogger _logger;
    public FileProcessor(ILogger logger)
    {
        _logger = logger;
    }
    public void ProcessFile(string filePath)
    {
        try
        {
            // code that reads and processes the file
        }
        catch (FileNotFoundException ex)
        {
            _logger.Error($"File not found: {ex.FileName}");
            throw;

Clean code exception-handling principles 137

        }
        catch (IOException ex)
        {
            _logger.Error($"Error reading file: {ex.Message}");
            throw;
        }
        catch (Exception ex)
        {
            _logger.Error($"Unexpected error: {ex.Message}");
            throw;
        }
    }
}

In this example, the FileProcessor class has a single responsibility: processing files. The class
takes an ILogger dependency in its constructor for logging errors. The ProcessFile method
handles three different types of exceptions:

•	 FileNotFoundException: If the file specified by the filePath parameter is not found,
the method logs an error message and rethrows the exception

•	 IOException: If an I/O error occurs while reading the file, the method logs an error message
and rethrows the exception

•	 Exception: If any other unexpected exception occurs, the method logs an error message
and rethrows the exception

Here’s a revised version of the FileReader class that uses File.Exists to check if the file exists
before trying to read it. This allows the class to handle the FileNotFoundException exception
more gracefully:

using System;
using System.IO;
public class FileProcessor
{
private ILogger _logger;
private string _filePath;
public FileProcessor(ILogger logger, string filePath){
         _logger = logger;
     _filePath = filePath;
        }
    public string ReadFile() {
        if (!File.Exists(_filePath)) {
            _logger.Error($"File {_filePath} does not exist.");
            return null;

Exception Handling138

        }
        try {
            using (StreamReader sr = new StreamReader(_filePath)) {
                string content = sr.ReadToEnd();
                return content;
            }
        }
        catch (IOException ex) {
            _logger.Error($"An IO error occurred: {ex}");
            throw;
        }
        catch (Exception ex) {
            _logger.Error($"An error occurred: {ex}");
            throw;
        }
    }
}

In this revised class, before attempting to read the file, we first check if the file exists using File.
Exists. If the file does not exist, we pass an error message to the logger and return null, avoiding
a FileNotFoundException exception. If the file does exist, we proceed to read the file as before,
catching and handling any IOException exception or general Exception exception that might occur.

This way, we’re still adhering to the SRP – the class is still only responsible for reading the file, but
now it also checks if the file exists before trying to read it. This is still a single responsibility because
the existence check is a necessary part of reading the file. Other parts of the program that use this
class can now handle the null return value in the case where the file does not exist, and they can still
handle any exceptions that the ReadFile method throws in the same way as before. This makes the
code more robust and easier to understand.

We will now look at the OCP.

OCP

The OCP states that software entities (classes, modules, functions, and so on) should be open for
extension but closed for modification. When it comes to exception handling, this means that your
code should be able to handle new types of exceptions without modifying existing code.

By following this principle, you can make your code more flexible and easier to maintain. One way to
achieve this is to use a strategy pattern to encapsulate the handling of each exception type in a separate class.

Here’s an example of how to use the OCP with exception handling in C#:

public interface IExceptionHandler
{

Clean code exception-handling principles 139

    bool HandleException(Exception ex);
}

We have an interface called IExceptionHandler that has a single method called HandleException
that takes an exception object as a parameter and returns a bool instance. We can now create
exception-handling classes that implement this interface to handle specific exception types:

public class FileNotFoundExceptionHandler : IexceptionHandler {
    private ILogger _logger;
    public FileNotFoundExceptionHandler(ILogger logger) {
        _logger = logger;
    }
    public bool HandleException(Exception ex) {
        if (ex is FileNotFoundException) {
            _logger.LogError($"File not found:
{((FileNotFoundException)ex).FileName}");
            return true;
        }
        return false;
    }
}

The FileNotFoundExceptionHandler class implements the IOExceptionHandler class
to handle exceptions that are raised when a file cannot be found:

public class IOExceptionHandler : IExceptionHandler {
    private ILogger _logger;
    public IOExceptionHandler(ILogger logger) {
        _logger = logger;
    }
    public bool HandleException(Exception ex) {
        if (ex is IOException) {
            _logger.LogError($"Error reading file: {ex.Message}");
            return true;
        }
        return false;
    }
}

The IOExceptionHandler class handles I/O exceptions when accessing resources on disk and
over a network with its own implementation of IExceptionHandler:

public class UnexpectedExceptionHandler : IExceptionHandler {
    private ILogger _logger;
    public UnexpectedExceptionHandler(ILogger logger) {

Exception Handling140

        _logger = logger;
    }
    public bool HandleException(Exception ex) {
        _logger.LogError($"Unexpected error: {ex.Message}");
        return true;
    }
}

The UnexpectedExceptionHandler class implements the IExceptionHandler interface
to handle raised exceptions that are unexpected:

Figure 5.1: A class diagram of our exception hierarchy

As you can see from the diagram, we have an exception interface. Every time we create a new type
of exception-handling class, we inherit from that interface to keep our exception classes consistent,
and each exception class is responsible for handling a specific exception type, as illustrated in the
following code snippet:

public class FileProcessor {
    private readonly IEnumerable<IExceptionHandler> _
exceptionHandlers;

Clean code exception-handling principles 141

    public FileProcessor(IEnumerable<IExceptionHandler>
exceptionHandlers)
    {
        _exceptionHandlers = exceptionHandlers;
    }
    public void ProcessFile(string filePath)
    {
        try
        {
            // code that reads and processes the file
        }
        catch (Exception ex)
        {
            var handled = false;
            foreach (var handler in _exceptionHandlers){
                if (handler.HandleException(ex)){
                    handled = true;
                    break;
                }
            }
            if (!handled){
                throw;
            }
        }
    }
}

In this example, the FileProcessor class takes an IEnumerable<IExceptionHandler>
dependency in its constructor for handling exceptions. Each exception handler is implemented as a
separate class that implements the IExceptionHandler interface. The FileProcessor class
uses a loop to iterate through the list of exception handlers and calls the HandleException method
on each one until an exception is handled.

Each exception handler class encapsulates the handling of a specific exception type. For example, the
FileNotFoundExceptionHandler class handles FileNotFoundException exceptions
by logging an error message. If a new type of exception needs to be handled, you can simply create a
new exception handler class that implements the IExceptionHandler interface.

By using the strategy pattern to encapsulate exception handling, the code is more modular and easier to
modify. You can add new types of exceptions to be handled without modifying the FileProcessor
class or any of the existing exception handlers. If an exception is unhandled, then it will be thrown.
Then, it will be up to the calling class to handle the outcome.

Exception Handling142

In summary, using the OCP with exception handling means that your code should be able to handle
new types of exceptions without modifying existing code. The strategy pattern can be used to
encapsulate the handling of each exception type in a separate class, making the code more flexible
and easier to maintain.

DIP

The DIP states that high-level modules should not depend on low-level modules, but both should
depend on abstractions. Abstractions should not depend on details, but details should depend on
abstractions. When it comes to exception handling, this means that your code should depend on
abstractions for logging and other operations related to exception handling, rather than depending
on specific implementations.

By following this principle, you can make your code more modular and easier to test. One way to
achieve this is to use dependency injection (DI) to inject abstractions for logging and other operations
related to exception handling into your code.

Here’s an example of how to use the DIP with exception handling in C#:

public interface IExceptionHandler
{
    bool HandleException(Exception ex);
}

We provide an interface with a single method that’s implemented by our different exception-handling classes:

public class LoggingExceptionHandler : IExceptionHandler
{
    private readonly ILogger _logger;
    public LoggingExceptionHandler(ILogger logger)
    {
        _logger = logger;
    }
    public bool HandleException(Exception ex)
    {
        _logger.LogError(ex.ToString());
        return true;
    }
}

In this example, the FileProcessor class takes an IEnumerable<IExceptionHandler>
dependency in its constructor for handling exceptions. The IExceptionHandler interface defines a
HandleException method that takes an Exception parameter and returns a Boolean indicating
whether the exception was handled.

Clean code exception-handling principles 143

The LoggingExceptionHandler class is a specific implementation of the IExceptionHandler
interface that logs the exception using an ILogger abstraction.

The FileProcessor class uses DI to inject an IEnumerable<IExceptionHandler>
dependency into its constructor. This allows the FileProcessor class to be more flexible since it
can be configured with different implementations of the IExceptionHandler interface at runtime.

By using the ILogger abstraction, the LoggingExceptionHandler class can be used with
any implementation of a logger that implements the ILogger interface. This allows the logging
implementation to be changed without modifying the LoggingExceptionHandler class.

The use of the ILogger abstraction and the LoggingExceptionHandler class demonstrates the
DIP, which is one of the SOLID principles of object-oriented (OO) design. The DIP suggests that high-level
modules should not depend on low-level modules, but both should depend on abstractions. This principle
helps to decouple components in a system, making it more flexible, maintainable, and easy to extend.

Let’s look at this in the context of the prior code that we’ve written:

1.	 ILogger abstraction:

	� This is the abstraction or interface that defines the contract for logging operations.

	� It’s a high-level module in the sense that it defines the behavior or API that any logger
implementation must adhere to.

	� The high-level module should not be concerned with the specific details of how logging is
done but should rely on this abstraction to delegate the responsibility.

2.	 LoggingExceptionHandler class:

	� This is the low-level module responsible for handling exceptions and logging error messages.

	� It’s a low-level module because it deals with specific implementation details, such as catching
exceptions and sending log messages to a logger.

	� However, instead of directly depending on a specific logger implementation, it depends on
the ILogger interface, which is an abstraction.

3.	 The DIP is upheld as follows:

	� The high-level module, LoggingExceptionHandler, depends on the ILogger
interface (abstraction), not on concrete logger implementations. This means that
LoggingExceptionHandler is not tightly coupled to any specific logging implementation.
It can work with any class that implements the ILogger interface.

	� Concrete logger implementations (for example, file logger, database logger, console
logger) would implement the ILogger interface. This way, the high-level module
(LoggingExceptionHandler) is decoupled from the low-level modules (specific
logger implementations), and the dependencies are inverted.

Exception Handling144

In summary, the DIP helps to ensure that high-level modules define the behavior and depend on
abstractions, while low-level modules implement the behavior and depend on those abstractions.
This decoupling makes the code more flexible and allows you to change the logging implementation
without modifying the LoggingExceptionHandler class, as long as the new implementation
adheres to the ILogger interface.

Best practices for handling exceptions
Here are some best practices for handling exceptions in C#:

•	 Only catch exceptions that you can handle: Catching exceptions that you cannot handle can
result in hiding the root cause of the exception and can lead to difficult-to-debug issues. Only catch
exceptions that you can handle, and let the ones that you cannot handle propagate up the call stack.

•	 Use try-catch blocks sparingly: While try-catch blocks can be useful for handling exceptions,
they can also negatively impact the performance of your application. Use them sparingly and
only when necessary.

•	 Use specific exception types: Catching general exceptions such as System.Exception can
make it difficult to determine the root cause of the exception. Instead, catch specific exception
types that are relevant to your application.

•	 Log exceptions: Logging exceptions can help you diagnose issues and fix bugs in your application.
Use a logging framework such as log4net or Serilog to log exceptions, and include relevant
information such as the exception type, message, and stack trace.

•	 Use a using statement for disposable objects: Disposable objects such as database connections
and file streams should be properly disposed of when they are no longer needed. Use a using
statement to ensure that they are disposed of properly, even in the case of an exception.

•	 Throw exceptions with meaningful messages: When throwing an exception, provide a
meaningful message that describes the root cause of the exception. This can make it easier
to diagnose issues and fix bugs in your application. Also, we should show only user-friendly
messages on the UI and hide the code details within the logs.

•	 Use exception filters: Exception filters allow you to catch exceptions based on specific criteria,
such as the exception message or the exception type. This can help you handle exceptions more
precisely and provide better error messages to the user.

•	 Avoid catching and rethrowing exceptions: Catching an exception and immediately rethrowing
it can make it more difficult to diagnose issues and fix bugs in your application. If you need to
catch an exception, handle it properly and only rethrow it if necessary.

•	 Handle exceptions as close to the source as possible: When an exception occurs, try to handle
it as close to the source of the problem as possible. This can help you minimize the impact of
the exception and prevent it from propagating further up the call stack.

Handling the TPL AggregateException exception 145

•	 Use structured exception handling: Structured exception handling allows you to write cleaner,
more readable code that is easier to maintain. Use try-catch-finally blocks to handle
exceptions in a structured way and ensure that resources are properly cleaned up. A finally
block is a good place to put code that needs to run regardless of whether an exception was
thrown or not. This can include cleanup code for resources such as database connections, file
streams, or network sockets. If the class is disposable, you can use the using keyword and
not rely on the finally block.

•	 Use custom exceptions: Custom exceptions can provide more specific information about the
error that occurred and make it easier to diagnose issues and fix bugs in your application. When
creating custom exceptions, make sure to follow the same guidelines as standard exceptions
and provide meaningful messages and proper documentation.

•	 Use asynchronous exception handling: Asynchronous exception handling can be more complex
than synchronous exception handling, but it is necessary when dealing with asynchronous
operations such as network requests or database queries. Use try-catch blocks with await
operators to handle asynchronous exceptions in a structured way.

By following these best practices, you can write more robust and reliable code that handles exceptions
effectively and helps you diagnose and fix issues more quickly.

Handling the TPL AggregateException exception
In C#, the Task Parallel Library (TPL) provides a convenient way to work with parallelism and
asynchronous operations. When you are working with asynchronous tasks, it’s common to use Task.
WhenAll or Task.WhenAny to wait for the completion of multiple tasks. However, if any of those
tasks throw an exception, the TPL will wrap those exceptions in the AggregateException exception.
Let us look at some best practices for handling AggregateException in the context of the TPL.

Use await with try-catch inside async methods

When working with asynchronous code, it’s common to use the await keyword to wait for the
completion of tasks. Inside asynchronous methods, you can use a try-catch block to catch exceptions:

try
{
    await Task.WhenAll(task1, task2, task3);
}
catch (AggregateException ex)
{
    // Handle or log the exceptions
    foreach (var innerException in ex.InnerExceptions)
    {
        // Handle or log each inner exception

Exception Handling146

    }
}

Flatten the exception hierarchy

Instead of directly catching AggregateException, you can use the Flatten method to get a
flat list of inner exceptions. This can simplify exception handling:

try
{
    await Task.WhenAll(task1, task2, task3);
}
catch (AggregateException ex)
{
    // Flatten the exception hierarchy
    var flattenedExceptions = ex.Flatten().InnerExceptions;
    // Handle or log the exceptions
    foreach (var innerException in flattenedExceptions)
    {
        // Handle or log each inner exception
    }
}

Handle individual exceptions

It’s essential to loop through inner exceptions and handle them individually. This allows you to take
specific actions based on the type of exception:

try
{
    await Task.WhenAll(task1, task2, task3);
}
catch (AggregateException ex)
{
    foreach (var innerException in ex.InnerExceptions)
    {
        if (innerException is SomeSpecificException)
        {
            // Handle specific exception type
        }
        else
        {
            // Handle or log other exceptions
        }

Creating custom exceptions and when to use them 147

    }
}

Handle exceptions as they occur

Instead of waiting for all tasks to complete before handling exceptions, you can handle exceptions as
soon as they occur by using the ContinueWith method:

var task1 = SomeAsyncMethod();
var task2 = AnotherAsyncMethod();
await Task.WhenAll(
    task1.ContinueWith(t => HandleTaskException(t)),
    task2.ContinueWith(t => HandleTaskException(t))
);
// ...
void HandleTaskException(Task task)
{
    if (task.Exception != null)
    {
        foreach (var innerException in task.Exception.InnerExceptions)
        {
            // Handle or log each inner exception
        }
    }
}

By following these best practices, you can effectively handle AggregateException and its inner
exceptions in a way that suits your application’s specific requirements.

Creating custom exceptions and when to use them
Custom exceptions are a powerful tool in C# that allows you to create your own exception types with
specific error messages and properties. They can be used to provide more specific information about
errors that occurred and make it easier to diagnose issues and fix bugs in your application.

Here is an example of how to create a custom exception in C#:

public class CustomException : Exception
{
    public CustomException() : base() { }

    public CustomException(string message) : base(message) { }

    public CustomException(string message, Exception innerException) :

Exception Handling148

base(message, innerException) { }

    public int ErrorCode { get; set; }
}

In this example, we are creating a custom exception called CustomException that is inherited from
the built-in Exception class. We are providing three constructors that allow us to create exceptions
with different error messages and inner exceptions. We are also adding an ErrorCode property to
the exception that can be used to provide additional information about the error.

Once you have created a custom exception, you can use it in your code as with any other exception.
Here is an example of how to throw a custom exception:

public void DoSomething()
{
    try
    {
        // do something that might throw an exception
    }
    catch (Exception ex)
    {
        CustomException customEx = new CustomException("An error
occurred while doing something", ex);
        customEx.ErrorCode = 1234;
        throw customEx;
    }
}

In this example, we are catching an exception that might be thrown by some code and creating a
new CustomException exception with a specific error message and inner exception. We are also
setting the ErrorCode property on the exception to a specific value. Finally, we are rethrowing the
custom exception so that it can be caught and handled by higher-level code.

Custom exceptions can be used in any situation where you need to provide more specific information
about an error that occurred. This could include situations where you need to distinguish between
different types of errors, provide additional information about the error, or create your own error-
handling logic. By using custom exceptions, you can make your code more robust, reliable, and easier
to maintain.

We’ll now look at common mistakes in exception handling and how to avoid them.

Avoiding common mistakes in exception handling 149

Avoiding common mistakes in exception handling
Here are some common mistakes that developers make when handling exceptions in C#:

•	 Catching too many exceptions: Catching all exceptions using a catch block without specifying
a specific exception type can lead to catching exceptions that should not be caught, such as
ThreadAbortException or StackOverflowException exceptions. Catching only
specific exceptions that are expected can prevent unnecessary exceptions from being caught.
Here’s an example:

try
{
    // Some code that may throw exceptions
}
catch (Exception ex)
{
    // Handle all exceptions here
}

In this example, the catch block catches all exceptions, including exceptions that should not be
caught, such as ThreadAbortException or StackOverflowException exceptions.
Instead, catch only the specific exceptions that you expect to be thrown.

Note
There are situations where you simply want to log some extended information, so it is fine to
catch all exceptions, log a lot of details, and then immediately rethrow them.

•	 Not logging (swallowing) exceptions: Not logging (swallowing) exceptions can cause unexpected
behavior or data loss and make it difficult to diagnose issues and fix bugs in your application.
Logging exceptions with detailed information such as the exception type, message, stack trace,
and any relevant context information can provide valuable information to developers and
system administrators. Here’s an example:

try
{
    // Some code that may throw exceptions
}
catch (Exception ex)
{
    // Do nothing with the exception
}

Exception Handling150

In this example, the catch block catches an exception but does not log it or take any action
with it. This can make it difficult to diagnose issues and fix bugs in your application. Instead,
log the exception with detailed information such as the exception type, message, stack trace,
and any relevant context information.

•	 Not using a finally block: Not using a finally block can lead to resources not being properly
released or cleaned up, even if an exception is thrown. A finally block is designed to contain
cleanup code that needs to run regardless of whether an exception is thrown or not. Here’s
an example:

try
{
    // Some code that may throw exceptions
}
catch (Exception ex)
{
    // Handle the exception
}
finally
{
    // Cleanup code that needs to run regardless of whether an
exception is thrown or not
}

In this example, the finally block is not used to contain cleanup code that needs to run
regardless of whether an exception is thrown or not.

•	 Not handling exceptions at the appropriate level: Handling exceptions too high up in the
call stack can lead to a lack of context about the error that occurred and can make it difficult to
diagnose the root cause of the problem. Handling exceptions closer to the source of the problem
can provide more detailed information about the error and make it easier to diagnose and fix.

For example, you could have a layered architecture where an exception occurs in the data
access layer but is being handled in the UI layer. In this example, the catch block handles
the exception at a high level, which can lead to a lack of context about the error that occurred.
Instead, handle exceptions closer to the source of the problem to provide more detailed
information about the error and make it easier to diagnose and fix. So, for this example, you
would handle the exception in the data access layer at the point where the exception occurs
and not higher up in the UI layer.

Note
When we talk about handling exceptions at too high a level, it means catching exceptions higher
up in the call stack than where they were thrown. For example, suppose a method in a lower
level of the call stack throws an exception, but the exception is caught and handled in a method
higher up in the call stack. This is an example of handling an exception at too high a level.

Testing exception handling 151

•	 Not providing enough information in exception messages: Exception messages that do not
provide enough information about the error that occurred can make it difficult to diagnose and
fix problems. Providing detailed information about the error, including any relevant context
information, can make it easier to diagnose and fix issues. Here’s an example:

try
{
    // Some code that may throw exceptions
}
catch (Exception ex)
{
    throw new Exception("An error occurred");
}

In this example, we are throwing a new exception without any information from the parent
exception, and the exception message does not provide enough information about the error
that occurred, which can make it difficult to diagnose and fix problems. It also does not reuse
the original exception in the new exception.

Instead, provide detailed information about the error, including any relevant context information,
to make it easier to diagnose and fix issues, and you can do this by reusing the original exception.

By avoiding these common mistakes, you can write cleaner, more reliable code that is easier to
maintain and debug.

Let us now consider testing exception handling.

Testing exception handling
Testing exception handling with different types of tests involves testing the handling of exceptions in
different contexts of an application. Here’s how to test exception handling with unit tests, integration
tests, and end-to-end tests:

•	 Unit tests: Unit tests are used to test the behavior of individual components of an application.
When testing exception handling with unit tests, we can create tests that verify that expected
exceptions are thrown in response to certain inputs.

For example, we can test a method that performs division by zero and ensure that it throws a
DivideByZeroException exception when zero is passed in as a denominator.

•	 Integration tests: Integration tests are used to test the interactions between different components
of an application. When testing exception handling with integration tests, we can verify that
components are handling exceptions properly when they interact with one another.

For example, we can test a system that sends data to an external API and verify that it handles
errors returned by the API properly.

Exception Handling152

•	 End-to-end tests: End-to-end tests are used to test the functionality of an application from
start to finish of its operation. When testing exception handling with end-to-end tests, we can
test that the application behaves correctly when it encounters unexpected errors.

For example, we can test a web application that displays an error message to the user when a
database connection fails.

In all cases, we can use assertions to verify that exceptions are thrown or handled properly. By testing
exception handling with different types of tests, we can ensure that our application behaves correctly
in different scenarios and that it is able to handle errors gracefully.

Unit testing exception handling

Here’s an example of how to write a unit test to test exception handling in C# using the NUnit
testing framework:

using NUnit.Framework;

[TestFixture]
public class CalculatorTests
{
    [Test]
    public void Divide_ThrowsDivideByZeroException()
    {
        // Arrange
        int numerator = 10;
        int denominator = 0;
       Calculator calculator = new();
        // Act and Assert
        Assert.Throws<DivideByZeroException>(() => calculator.
Divide(numerator, denominator));
    }
}

In this example, we’re testing a method called calculator.Divide that takes two integers and
returns their quotient. We’re intentionally passing in a denominator value of 0, which will cause a
DivideByZeroException exception to be thrown.

The Assert.Throws method is used to verify that the expected exception is thrown when we call
the calculator.Divide method. The lambda expression passed to Assert.Throws is the
code that we expect to throw the exception.

If the exception is not thrown, the test will fail. If the exception is thrown, the test will pass.

Testing exception handling 153

This is just one example of how to write a unit test to test exception handling in C#. By testing exception
handling with unit tests, we can ensure that our code is able to handle unexpected errors and prevent
our program from crashing.

Integration testing exception handling

Integration testing in C# involves testing the interactions between different components of an application
to verify that they work together correctly. When it comes to testing exception handling, integration
testing can help ensure that exceptions are propagated correctly across different components of
an application.

Here’s an example of how to perform integration testing of exception handling in C#.

Suppose we have a web application that retrieves data from a database and displays it to the user.
When the application encounters an error retrieving data from the database, it should display an
error message to the user. We can write an integration test to verify that this behavior works correctly:

1.	 First, we can create a test database with some sample data that our application will retrieve.

2.	 Next, we can write a test that simulates an error occurring when the application tries to retrieve
data from the database. We can do this by configuring the test database to return an error when
the application tries to execute a particular query.

3.	 We can then run the web application and navigate to the page that displays the data. If everything
is working correctly, we should see an error message displayed to the user indicating that an
error occurred when trying to retrieve data from the database.

4.	 Finally, we can verify that the error message is correct and contains the expected information.

Alternatively, we can use testing and mocking frameworks such as Moq, xUnit, Nunit, and MSTest to
automate our tests and raise exceptions to ensure program behavior is what we expect.

Testing database integration scenarios in C# using DI is a common practice, and it allows you to
isolate and test your code more effectively. In the case where you want to test a scenario where a
MongoDbException exception is caught, you can use a mocking framework to create a mock of
IMongoCollection that throws specific MongoDBDriver exceptions.

Let’s go through a step-by-step example using a popular mocking framework such as Moq and a
testing framework such as MSTest:

1.	 Install the necessary packages:

Make sure you have the required packages installed. You can use NuGet Package Manager
Console for this:

Install-Package Moq
Install-Package MSTest.TestFramework

Exception Handling154

2.	 Create the interface and class:

Assume you have a service or class that interacts with MongoDB and uses IMongoCollection.
Here’s a simplified example:

using MongoDB.Driver;
public interface IDataService
{
    void PerformDatabaseOperation();
}
public class DataService : IDataService
{
    private readonly IMongoCollection<Document> _
mongoCollection;
    public DataService(IMongoCollection<Document>
mongoCollection)
    {
        _mongoCollection = mongoCollection;
    }
    public void PerformDatabaseOperation()
    {
        try
        {
            // Your MongoDB-related code here
            // For example, _mongoCollection.
InsertOne(document);
        }
        catch (MongoException ex)
        {
            // Handle MongoDB exceptions
            // Log, rethrow, or perform custom actions
        }
    }
}
public class Document
{
    // Your document properties
}

3.	 Write the test:

Now, let’s write a test to verify the exception handling. We’ll use Moq to create a mock of
IMongoCollection that throws a MongoException exception when InsertOne is called:

using Moq;
using MongoDB.Driver;
[TestClass]

Testing exception handling 155

public class DataServiceTests
{
    [TestMethod]
    public void PerformDatabaseOperation_HandlesMongoException()
    {
        // Arrange
        var mockCollection = new
Mock<IMongoCollection<Document>>();
        mockCollection .Setup(x => x.InsertOne(It.
IsAny<Document>(), null, default(CancellationToken)))
.Throws(new MongoException("Simulated MongoDB exception"));
        var dataService = new DataService(mockCollection.
Object);
        // Act
        dataService.PerformDatabaseOperation();
        // Assert
        // Add assertions as needed, depending on your specific
requirements
        // For example, you might check logs or perform other
verifications
    }
}

In this test, we’re arranging for the mock IMongoCollection interface to throw
a MongoException exception when InsertOne is called. The test then calls the
PerformDatabaseOperation method, and you can assert that the exception is handled
correctly or perform other necessary checks.

4.	 Run the test:

Run your test using your preferred test runner (such as Visual Studio Test Explorer) and ensure
that it passes.

By using DI and mocking frameworks such as Moq, you can create controlled environments for
testing database integration scenarios and ensure that your code handles exceptions appropriately.

By performing integration testing of exception handling, we can ensure that our application behaves
correctly when it encounters unexpected errors and that errors are propagated correctly across different
components of the application. This can help us identify and fix issues before they make it into production.

End-to-end testing exception handling

End-to-end testing in C# involves testing the entire application to verify that it works correctly from
the user’s perspective. When it comes to testing exception handling, end-to-end testing can help ensure
that the application behaves correctly when it encounters unexpected errors.

Here’s an example of how to perform end-to-end testing of exception handling in C#.

Exception Handling156

Suppose we have a web application that allows users to submit a form with some data, which is then saved
to a database. When the application encounters an error saving data to the database, it should display an
error message to the user. We can write an end-to-end test to verify that this behavior works correctly:

1.	 First, we can write a test script that interacts with the web application by filling out the form
and submitting it.

2.	 Next, we can configure the test script to simulate an error occurring when the application
tries to save data to the database. We can do this by configuring the database to reject the
insert statement.

3.	 We can then run the test script and verify that the error message is displayed to the user,
indicating that an error occurred when trying to save data to the database.

4.	 Finally, we can verify that the error message is correct and contains the expected information.

By performing end-to-end testing of exception handling, we can ensure that our application behaves
correctly when it encounters unexpected errors from the user’s perspective. This can help us identify
and fix issues before they make it into production and ensure that our users have a smooth experience
using the application.

An employee management example of mocking and unit
testing with correct exception handling
Handling exceptions is an essential part of writing robust and reliable code. In an employee management
example, you might encounter various scenarios where exceptions need to be handled, such as database
errors, file I/O issues, or validation problems.

In this section, we will write some sample code for an employee management system that employs
correct exception handling and write unit tests with Moq objects to ensure our code works as we expect.

First, we need an Employee class:

public class Employee
{
    public int EmployeeId { get; set; }
    public string FirstName { get; set; }
    public string LastName { get; set; }
    public DateTime BirthDate { get; set; }
}

We can now add our EmployeeManager class:

public class EmployeeManager
{
    // Simulating a database operation

An employee management example of mocking and unit testing with correct exception handling 157

    public Employee GetEmployeeById(int employeeId)
    {
        // Assume this method might throw a database exception
        // if the employee with the given ID is not found.

        // Simulating a scenario where the employee is not found.
        throw new EmployeeNotFoundException($"Employee with ID
{employeeId} not found");
    }

    // Simulating a file I/O operation
    public void SaveEmployeeToFile(Employee employee)
    {
        // Assume this method might throw a file I/O exception
        // if there is an issue writing to the file.

        // Simulating a scenario where the file cannot be written.
        throw new FileIOException("Error writing to the employee
file");
    }
}

We need to handle the eventuality that an employee may not be found. So, we will add our
EmployeeNotFoundException class:

public class EmployeeNotFoundException : Exception
{
    public EmployeeNotFoundException(string message) : base(message)
    {
    }
}

We also need to consider file I/O exceptions, so we will add our FileIOException class:

public class FileIOException : Exception
{
    public FileIOException(string message) : base(message)
    {
    }
}

Now, we can update our Program class that acts as the entry point for our application:

public class Program
{
    public static void Main()

Exception Handling158

    {
        EmployeeManager employeeManager = new EmployeeManager();
        try
        {
            int employeeId = 1;
            Employee employee = employeeManager.
GetEmployeeById(employeeId);
            Console.WriteLine($"Employee {employee.FirstName}
{employee.LastName} found!");
        }
        catch (EmployeeNotFoundException ex)
        {
            Console.WriteLine($"Error: {ex.Message}");
        }
        catch (Exception ex)
        {
            // Catch any unexpected exceptions
            Console.WriteLine($"Unexpected error: {ex.Message}");
        }
        try
        {
            Employee newEmployee = new Employee
            {
                EmployeeId = 2,
                FirstName = "John",
                LastName = "Doe",
                BirthDate = new DateTime(1990, 1, 1)
            };
            employeeManager.SaveEmployeeToFile(newEmployee);
            Console.WriteLine("Employee saved to file successfully!");
        }
        catch (FileIOException ex)
        {
            Console.WriteLine($"Error saving employee to file: {ex.
Message}");
        }
        catch (Exception ex)
        {
            // Catch any unexpected exceptions
            Console.WriteLine($"Unexpected error: {ex.Message}");
        }
    }
}

An employee management example of mocking and unit testing with correct exception handling 159

That is our simple employee management application written.

In this example, the EmployeeManager class has methods that simulate database and file I/O operations,
and these methods intentionally throw custom exceptions (EmployeeNotFoundException and
FileIOException). In the Main method, exception handling is demonstrated using try, catch,
and finally blocks. Custom exceptions are caught specifically, and a general Exception catch
block is included to handle unexpected errors. This helps to gracefully handle exceptions and provide
meaningful error messages to the user or log errors for further investigation.

Let us now add our mocking and testing classes. In this example, we’ll use the Moq framework for creating
mock objects and NUnit for unit testing. First, you’ll need to install the necessary NuGet packages:

Install-Package Moq
Install-Package NUnit
Install-Package NUnit3TestAdapter

Now, let’s create unit tests for the EmployeeManager class using Moq. First, create an
EmployeeManagerTests class:

using Moq;
using NUnit.Framework;
using System;
[TestFixture]
public class EmployeeManagerTests
{
}

We’ll now add our first test to the EmployeeManagerTests class that returns an employee:

[Test]
public void GetEmployeeById_EmployeeFound_ReturnsEmployee()
{
    // Arrange
    int employeeId = 1;
    Employee expectedEmployee = new Employee
    {
        EmployeeId = employeeId,
        FirstName = "John",
        LastName = "Doe",
        BirthDate = new DateTime(1990, 1, 1)
    };
    var mockEmployeeManager = new Mock<EmployeeManager>();
    mockEmployeeManager.Setup(manager => manager.
GetEmployeeById(employeeId)).Returns(expectedEmployee);
    // Act

Exception Handling160

    Employee actualEmployee =
        mockEmployeeManager.Object.GetEmployeeById(employeeId);
    // Assert
    Assert.AreEqual(expectedEmployee, actualEmployee);
}

Next, we need to test when an employee is not found:

[Test]
public void GetEmployeeById_EmployeeNotFound_
ThrowsEmployeeNotFoundException()
{
    // Arrange
    int employeeId = 1;
    var mockEmployeeManager = new Mock<EmployeeManager>();
mockEmployeeManager.Setup(manager => manager.
GetEmployeeById(employeeId))
.Throws(new EmployeeNotFoundException("Employee not found"));
    // Act and Assert
    Assert.Throws<EmployeeNotFoundException>(() =>
        mockEmployeeManager.Object.GetEmployeeById(employeeId));
}

We now need to test for a successful file save operation:

[Test]
public void SaveEmployeeToFile_SuccessfulSave_NoExceptionThrown()
{
    // Arrange
    var employee = new Employee
    {
        EmployeeId = 2,
        FirstName = "John",
        LastName = "Doe",
        BirthDate = new DateTime(1990, 1, 1)
    };
    var mockEmployeeManager = new Mock<EmployeeManager>();
    mockEmployeeManager.Setup(manager => manager.
SaveEmployeeToFile(employee));
    // Act and Assert (no exception should be thrown)
    Assert.DoesNotThrow(() =>
        mockEmployeeManager.Object.SaveEmployeeToFile(employee));
}

Summary 161

Finally, we need to test for a file I/O exception being raised:

[Test]
public void SaveEmployeeToFile_FileIOExceptionThrown_
CatchesException()
{
    // Arrange
    var employee = new Employee
    {
        EmployeeId = 2,
        FirstName = "John",
        LastName = "Doe",
        BirthDate = new DateTime(1990, 1, 1)
    };
    var mockEmployeeManager = new Mock<EmployeeManager>();
    mockEmployeeManager.Setup(manager => manager.
SaveEmployeeToFile(employee))
                      .Throws(new FileIOException("Error saving to
file"));
    // Act and Assert
    Assert.Throws<FileIOException>(() =>
        mockEmployeeManager.Object.SaveEmployeeToFile(employee));
}

In these tests, we use Moq to create mock objects for the EmployeeManager class. We set up the
behavior of the mock object using the Setup method, specifying the expected method calls and
their return values or exceptions. The Assert statements then verify that the expected behavior
occurs during the tests.

That’s the end of the chapter, so let’s summarize what we’ve learned.

Summary
We started with an overview of exception handling in C#. We saw there are two types of exceptions:
System.Exception and System.ApplicationException. System.Exception is the
base class for all exceptions in the .NET Framework, while System.ApplicationException
is the base class for all application-specific exceptions.

Then, we moved on to review clean code exception handling using the SRP, OCP, and DIP. We saw
how these principles help to keep our code clean, readable, extendable, and maintainable.

Next, we looked at best practices for exception handling. By following these best practices, we saw
how we can write more robust and reliable code that handles exceptions effectively and helps us to
diagnose and fix issues more quickly.

Exception Handling162

We then moved on to look at some common exception-handling mistakes and how we can avoid
them. By avoiding these common mistakes, we can write cleaner, more reliable code that is easier to
maintain and debug.

Next, we looked at various debugging techniques and tools for handling exceptions. These tools assist
us in hunting down bugs more easily and fixing them more easily.

And finally, we looked at testing our exception handling using unit tests, integration tests, and end-to-
end testing. When we know how code should act in exceptional circumstances, we can test for this.
If problems are encountered, then they can be addressed and fixed.

In the next chapter, we will be looking at unit testing.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 What is the principle of handling exceptions as close to the source of the error as possible, and
why is it important for writing clean code?

2.	 How can you make your exception handling more specific and targeted by catching more
specific exception types rather than generic ones?

3.	 What is a finally block in a try-catch-finally statement, and why is it important for
writing robust and maintainable code?

4.	 How can you use custom exception types to provide more meaningful feedback to the user
and make your code more maintainable and extensible?

5.	 What are some best practices for logging and handling exceptions in multithreaded code?

6.	 How can you use the global exception handler to provide a centralized location for handling
exceptions in your application?

7.	 Why is it important to test exception handling in your code, and what are some common
approaches to testing exception handling?

8.	 What are some common pitfalls to avoid when writing exception-handling code, and how can
you ensure that your exception handling is both effective and maintainable?

9.	 How does the use of exception handling impact the overall readability and maintainability of
your code, and how can you strike the right balance between handling exceptions effectively
and keeping your code clean and easy to understand?

Further reading 163

Further reading
If you are interested in learning more about clean code techniques for C# exception handling, here
are some resources you might find useful:

•	 Clean Code: A Handbook of Agile Software Craftsmanship by Robert C. Martin: This classic
book provides a comprehensive overview of clean code techniques, including best practices
for exception handling.

•	 Exceptional C# Exception Handling by Avi Avni: This article on CodeProject provides an in-depth
guide to best practices for exception handling in C#, including tips on when to catch exceptions,
how to use custom exception types, and how to handle exceptions in asynchronous code.

•	 Best Practices for Handling Exceptions by Microsoft: This article on the Microsoft Docs website
provides an overview of best practices for handling exceptions in C#, including advice on how to
use try-catch blocks, when to throw exceptions, and how to create custom exception types.

•	 10 Best Practices for Handling Exceptions in C# by Dino Esposito: This article on the Redgate website
provides 10 best practices for handling exceptions in C#, including tips on how to use finally
blocks, how to use using statements, and how to handle exceptions in multithreaded code.

•	 Exception Handling in C# with Best Practices by Saineshwar Bageri: This article on the C#
Corner website provides a detailed guide to exception handling in C#, including best practices
for logging exceptions, how to use the global exception handler, and how to use the Exception
Handling Application Block in the Enterprise Library.

6
Unit Testing

Unit testing is an important aspect of software development that helps ensure the quality and correctness
of code. By writing unit tests, developers can verify that their code behaves as expected and catch
bugs early in the development process. In C#, there are several tools and frameworks available for
writing unit tests, such as MSTest, NUnit, and xUnit. However, simply writing unit tests is not enough
to ensure clean code.

To truly benefit from unit testing, developers must understand how to write effective tests that cover all
critical scenarios and adhere to best practices. In this chapter, we will cover essential topics for using
unit tests to write clean code in C#. We will discuss the fundamentals of unit testing, the benefits of
test-driven development (TDD), best practices for writing effective unit tests, and how to integrate
unit tests into your software development life cycle (SDLC).

We will be covering the following topics:

•	 Understanding unit testing: Understanding the fundamentals of unit testing, the benefits of
unit testing, and how unit tests fit into the SDLC

•	 Writing testable code: Designing code that is easy to test, adhering to the SOLID principles,
and using patterns such as dependency injection (DI) to decouple code

•	 TDD: Understanding the principles of TDD, which involves writing tests first and then writing
code to make those tests pass

•	 Choosing a testing framework: Selecting a testing framework that fits your needs, such as
MSTest, NUnit, or xUnit

•	 Writing effective unit tests: Writing unit tests that are concise, maintainable, and robust,
covering all relevant scenarios and edge cases

•	 CI/CD description: Providing integration testing as part of your CI/CD pipeline.

•	 Problem tests description: Identify and fix "test smells".

Unit Testing166

The key learning outcomes of this chapter on using unit tests to write clean code in C# will be:

•	 Understanding the benefits of writing testable code and why it is important to unit test your code

•	 Choosing and using unit testing and mocking frameworks

•	 Integrating testing into the DevOps pipeline

Technical requirements
To follow along with this chapter, you will need access to Visual Studio 2022 Community Edition or later.
You will find the source code for this chapter at https://github.com/PacktPublishing/
Clean-Code-with-CSharp-Second-Edition/tree/main/CH06.

Understanding unit testing
In C#, unit tests are automated tests written to verify the behavior of a small, isolated piece of code
known as a unit. The goal of unit testing is to ensure that the unit behaves as expected and meets the
requirements and specifications defined for it.

A unit test should test the functionality of the unit in isolation, without relying on any external
dependencies, such as a database or web service. The isolation of the unit test ensures that any failures
are caused by issues within the unit being tested, rather than external factors. This means that unit
tests are fast, efficient, and provide rapid feedback to the developer.

Unit tests should cover all relevant scenarios and edge cases for the unit being tested, including both
valid and invalid input values. This helps to ensure that the unit behaves correctly in all possible
situations. Unit tests should also be maintainable, meaning that they can be easily updated as changes
are made to the code or requirements.

However, there are some things that unit tests should not test. Unit tests should not test external
dependencies, such as a database or web service, as this goes beyond the scope of the unit being
tested. Instead, these dependencies should be mocked or stubbed out to isolate the unit being tested.
Additionally, unit tests should not test non-functional requirements (NFRs), such as performance
or security. These types of requirements should be tested through other means, such as performance
testing or security testing.

Writing testable code
Writing testable code in C# is essential for ensuring that code behaves as expected and can be efficiently
tested with automated tests. Here are some C#-specific tips and examples for writing testable code:

1.	 Use interfaces to define dependencies: Interfaces are a powerful tool for defining dependencies
between classes. By defining dependencies through interfaces, it is easy to swap out dependencies

https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH06
https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH06

Writing testable code 167

with test doubles, such as mocks or stubs, for testing purposes. For example, consider the
following code:

public class OrderService
{
    private readonly IorderRepository _orderRepository;
    public OrderService(IorderRepository orderRepository)
    {
        _orderRepository = orderRepository;
    }
    public Order GetOrderById(int id)
    {
        return _orderRepository.GetById(id);
    }
}

In this code, the OrderService class depends on the IorderRepository interface. By
defining the dependency through an interface, it is easy to create a test double, such as a mock
or stub, to test the OrderService class in isolation.

2.	 Use constructor injection to manage dependencies: Constructor injection is a common
technique used in C# to manage dependencies between classes. By passing dependencies
through the constructor, it is easy to instantiate objects with the required dependencies,
making it easy to write unit tests. For example, in the previous code, the OrderService
class takes a dependency on the IorderRepository interface through its constructor.
This makes it easy to create an instance of the OrderService class with a test double for
the IorderRepository interface.

3.	 Avoid static dependencies: Static dependencies can make code difficult to test, as they are
difficult to mock or stub out. Instead, use instance-based dependencies and DI to manage
dependencies. For example, using our OrderService code, the OrderService class
uses an instance-based dependency on the IorderRepository interface, making it easy
to create test doubles for the interface.

4.	 Use SOLID principles to write testable code: The SOLID principles are a set of guidelines for
writing clean and maintainable code. By following these principles, it is easier to write testable
code. For example, the Single Responsibility Principle (SRP) recommends that classes should
have only one responsibility, making them easier to test in isolation. The Dependency Inversion
Principle (DIP) recommends that high-level modules should not depend on low-level modules,
but both should depend on abstractions, making it easier to replace dependencies with test doubles.

Writing testable code in C# involves using interfaces to define dependencies, constructor injection to
manage dependencies, avoiding static dependencies, and using SOLID principles to write clean and
maintainable code. By following these best practices, it is easier to write automated tests that ensure
code behaves as expected and is maintainable over time.

Unit Testing168

TDD
TDD is a software development approach in which tests are written before the actual code. The process
involves iterative cycles: write a small unit test, run it (expecting it to fail initially), then write the code
to make the test pass, and finally refactor the code while ensuring that all tests continue to pass. This
cycle is often summarized as Red-Green-Refactor.

The reason why TDD is needed is that it enables early detection of defects, helps produce clearer
requirements, facilitates incremental development, and enables developers to refactor with confidence.

By writing tests before writing the actual code, developers are forced to consider the desired functionality
and potential edge cases. This helps catch defects at an early stage, reducing the cost and effort required
for debugging later in the development cycle.

Writing tests before code encourages developers to think through the requirements and expected
behavior of the system. This results in clearer and more explicit specifications for each unit of code,
improving overall understanding and reducing ambiguity.

TDD encourages developers to break down the development process into small, manageable units.
This incremental approach allows for more frequent integration of new features, making it easier to
adapt to changing requirements and ensuring that each piece of functionality works as intended.

TDD provides a safety net for refactoring. Since the tests are written first, any changes made during
refactoring can be validated by running the existing test suite. If the tests pass, developers can be more
confident that the changes did not introduce new bugs.

The tests themselves serve as a form of living documentation. They provide a clear and executable
specification of how the code is expected to behave. Additionally, as the code evolves, the tests are
updated accordingly, creating a form of living documentation that stays synchronized with the code base.

We benefit from TDD with improved code quality and faster development cycles; we increase developer
confidence, it is easier to collaborate on projects, and we can more easily adapt to change.

TDD leads to higher code quality by ensuring that each piece of code has a corresponding set of
tests. This not only helps in identifying bugs early but also results in more modular, maintainable,
and loosely coupled code.

Despite the perception that writing tests first may slow down the development process, TDD often
speeds up development in the long run. It reduces the time spent on debugging and makes it easier
to add new features or refactor existing code without fear of breaking existing functionality.

Developers gain confidence in their code because passing tests validate that the code behaves as
expected. This confidence is crucial when making changes to the code base or when collaborating
with other team members.

TDD promotes collaboration within development teams. The explicit and executable nature of tests
makes it easier for team members to understand each other’s code and contribute effectively.

TDD 169

TDD makes code more adaptable to changes in requirements. Since the code base is continuously validated
by tests, developers can confidently make changes, knowing that existing functionality won’t be compromised.

TDD is a powerful development methodology that contributes to the creation of robust, maintainable,
and high-quality software. It aligns well with agile development practices and is widely adopted in
the software industry for its numerous benefits in terms of code quality, development speed, and
adaptability to changing requirements. The Arrange, Act, Assert (AAA) pattern is a structure used
in writing automated tests to enhance clarity and maintainability. Let’s take a closer look at this:

•	 Arrange: In this phase, you set up the initial conditions or context for the test. This involves
preparing the test environment, initializing any necessary objects or variables, and configuring
the system to be in a specific state before the actual test action occurs.

•	 Act: This is the step where the actual test action or operation takes place. It involves executing
the specific functionality or behavior that you want to test. This is the point where you trigger
the code or operation that you are assessing for correctness.

•	 Assert: The final phase is dedicated to verification. Here, you check whether the results of the
Act phase align with your expectations. Assertions are used to verify that the system is in the
expected state or that the expected outcome has been achieved. If the assertion passes, the test is
considered successful; if it fails, it indicates a discrepancy between expected and actual outcomes.

Following the AAA pattern helps in maintaining a clear and organized structure for tests, making it
easier to understand, troubleshoot, and update them. Each phase serves a distinct purpose, contributing
to the overall effectiveness of the automated test.

An example of using the AAA TDD pattern

Here’s a simple example in C# of using the AAA pattern. Assume you have a simple class with a
method to add two numbers:

public class Calculator
{
    public int Add(int a, int b)
    {
        return a + b;
    }
}

Now, let’s write a test for the Add method using the AAA pattern:

[TestClass]
public class CalculatorTests
{
    [TestMethod]

Unit Testing170

    public void Add_ShouldReturnSumOfTwoNumbers()
    {
        // Arrange
        Calculator calculator = new Calculator();
        int num1 = 5;
        int num2 = 7;

        // Act
        int result = calculator.Add(num1, num2);
        // Assert
        Assert.AreEqual(12, result);
    }
}

In this example, the following happens:

•	 Arrange: We set up the test by creating an instance of the Calculator class and defining
two numbers, num1 and num2

•	 Act: We call the Add method on the calculator object with the arranged values (num1
and num2) and store the result in the result variable

•	 Assert: We verify that the result of the Add method matches our expectations using the
Assert.AreEqual method

This simple test checks if the Add method of the Calculator class correctly adds two numbers.

With TDD you can start with a failing test, then write the minimum code for it to pass. Afterward, you
can refactor the code as necessary. This helps to incrementally develop your code and make changes
with confidence. But which testing framework should you use? Well, the choice is yours. But to help
you know which framework to choose, we will look at choosing a testing framework in the next section.

Choosing a testing framework
When it comes to choosing a testing framework for C#, there are several popular options available,
including MSTest, NUnit, and xUnit. Each of these frameworks has its strengths and weaknesses, so
it’s important to evaluate them based on your specific needs.

Choosing a testing framework 171

Here is an extensive comparison table that highlights various aspects of MSTest, NUnit, and xUnit,
three popular testing frameworks for C#:

Feature/Aspect MSTest NUnit xUnit
Setup and Teardown [TestInitial-

ize], [Test-
Cleanup]

[SetUp],
[TearDown]

Constructor, Dispose

Test Attribute [TestMethod] [Test] [Fact]

Test
Explorer Integration

Visual Studio Visual
Studio, ReSharper

Visual
Studio, ReSharper

Assertion Syntax BDD-style Fluent Fluent, Assert
Parallel Execution Yes Yes Yes
Data-Driven Tests [DataSource] [TestCase] [InlineData],

[ClassData]

Test Parameterization Limited Yes (via [Test-
Case])

Yes ([Inline-
Data], [Class-
Data])

Theory Tests No No Yes ([Theory])
Test Categories/Labels [TestCategory] [Category] [Trait]

Test Priority [Priority] [Order] [Trait]

Ignored/Skipped Tests [Ignore] [Ignore] [Fact(Skip =
Reason)]

Test Case Source TestCase Class External
Source, Attributes

Inline, Member-
Data, ClassData

Fixture Setup
and Teardown

[ClassInitial-
ize], [Class-
Cleanup]

[TestFixture-
SetUp], [Test-
FixtureTear-
Down]

[Collection],
IClassFix-
ture, ICollec-
tionFixture

Fixture Lifespan Class Per Test Fixture Per Test Class
Test Runner
Independence

Limited Yes Yes

.NET Core Support Yes Yes Yes
Community
and Ecosystem

Mature, Broad Mature Mature

Extensibility Limited Extensible
(Add-ins)

Extensible
(Traits Customization)

Unit Testing172

Documentation Good Good Good
License MS-PL (Microsoft

Public License)
NUnit License Apache 2.0 License

Table 6.1: Test framework comparison table

This table provides an overview of various aspects to consider when choosing a testing framework in
C#. It’s important to note that the choice between MSTest, NUnit, and xUnit often depends on specific
project requirements, team preferences, and existing infrastructure. Each framework has its strengths
and weaknesses, so it’s recommended to evaluate them based on your specific needs.

Testing framework attribute differences

Between the different testing frameworks, they all perform the same task of testing your code, but they can
do things differently. One of the main differences is the use of attributes and their names. The following
table provides a comparison of the differences in attribute names between the different frameworks:

Attribute MSTest NUnit xUnit

[TestMethod] Yes [Test] [Fact]

[TestClass] Yes [TestFixture] N/A

[TestInitialize]
[ClassInitial-
ize]

[TestFixture-
SetUp]

[Collection-
SetUp]

[TestCleanup] [ClassCleanup]
[TestFixture-
TearDown]

[Collection-
TearDown]

[TestMethod-
SetUp] N/A [SetUp] N/A
[TestMethodTear-
Down] N/A [TearDown] N/A

[Ignore] [Ignore] [Ignore]
[Fact(Skip =
"Reason")]

[DataRow] [DataRow] [TestCase] [InlineData]

[DataSource] [DataSource] [TestCaseSource] [MemberData]

[TestCategory] [TestCategory] [Category] N/A

[Owner] [Owner] N/A N/A

[Timeout] [Timeout] [Timeout]
[Fact(Time-
out = n)]

[Description] [Description] [Description] N/A

Choosing a testing framework 173

[ExpectedExcep-
tion]

[ExpectedEx-
ception]

[ExpectedExcep-
tion] [Fact]

[Assert] MSTest assertions NUnit assertions xUnit assertions

Table 6.2: Testing framework attribute comparisons

TDD using MSTest

MSTest is a popular testing framework for C# that comes with a set of attributes and terminology to
help you write and run tests. Here’s an explanation of some of the most used attributes and terminology
in MSTest:

•	 TestMethod attribute: The [TestMethod] attribute is used to mark a method as a test method.
The method must have the signature of a void method with no parameters. The framework will
execute all methods marked with this attribute as individual tests.

•	 TestClass attribute: The [TestClass] attribute is used to mark a class as a test class. All test
methods within the class will be executed when the test runner executes the tests.

•	 TestInitialize attribute: The [TestInitialize] attribute is used to mark a method that
should be executed before each test method is run. This is useful when you need to set up
common test data or objects before running each test method.

•	 TestCleanup attribute: The [TestCleanup] attribute is used to mark a method that should
be executed after each test method is run. This is useful for cleaning up test data or objects
after each test.

•	 TestContext property: The TestContext property is a property of the test class that provides
information about the current test run. It can be used to get information about the current test
method, the test environment, and the build configuration.

•	 Assert class: The Assert class provides a set of methods for testing conditions within your
tests. The most used methods include Assert.AreEqual, Assert.IsTrue, and Assert.
IsFalse. These methods allow you to test whether a value is equal to an expected value or
whether a condition is true or false.

•	 DataTestMethod attribute: The [DataTestMethod] attribute is used to mark a method
that is a data-driven test. This attribute is used in combination with the [DataRow] attribute
to provide input data to the test method.

•	 DataRow attribute: The [DataRow] attribute is used to provide input data to a data-driven
test method. The attribute can be applied multiple times to a test method to provide multiple
sets of input data.

By understanding and using these attributes and terminology, you can write effective and efficient
tests using MSTest in C#.

Unit Testing174

TDD using NUnit

NUnit is a popular open source testing framework for C# that provides a variety of attributes and
terminology to help you write and run tests. Here’s an explanation of some of the most used attributes
and terminology in NUnit:

•	 Test attribute: The [Test] attribute is used to mark a method as a test method. The method
must have the signature of a void method with no parameters. The framework will execute all
methods marked with this attribute as individual tests.

•	 TestFixture attribute: The [TestFixture] attribute is used to mark a class as a test fixture.
All test methods within the class will be executed when the test runner executes the tests.

•	 SetUp attribute: The [SetUp] attribute is used to mark a method that should be executed
before each test method is run. This is useful when you need to set up common test data or
objects before running each test method.

•	 TearDown attribute: The [TearDown] attribute is used to mark a method that should be
executed after each test method is run. This is useful for cleaning up test data or objects after
each test.

•	 TestContext object: The TestContext object is a property of the test class that provides
information about the current test run. It can be used to get information about the current test
method, the test environment, and the build configuration.

•	 Assert class: The Assert class provides a set of methods for testing conditions within your
tests. The most used methods include Assert.AreEqual, Assert.IsTrue, and Assert.
IsFalse. These methods allow you to test whether a value is equal to an expected value or
whether a condition is true or false.

•	 ValueSource attribute: The [ValueSource] attribute is used to mark a method that returns
a set of input data to a test method. This attribute is used in combination with the [TestCase]
attribute to provide input data to the test method.

•	 TestCase attribute: The [TestCase] attribute is used to provide input data to a test method.
The attribute can be applied multiple times to a test method to provide multiple sets of input data.

•	 Category attribute: The [Category] attribute is used to mark a test method or test fixture
with one or more categories. This allows you to organize your tests into categories for better
reporting and filtering.

By understanding and using these attributes and terminology, you can write effective and efficient
tests using NUnit in C#.

Choosing a testing framework 175

TDD using xUnit

xUnit is a popular open source testing framework for C# that provides a variety of attributes and
terminology to help you write and run tests. Here’s an explanation of some of the most used attributes
and terminology in xUnit:

•	 Fact attribute: The [Fact] attribute is used to mark a method as a test method. The method
must have the signature of a void method with no parameters. The framework will execute all
methods marked with this attribute as individual tests.

•	 Theory attribute: The [Theory] attribute is used to mark a method as a parameterized test.
This allows you to run the same test with different sets of input data. The attribute can be used
in combination with the [InlineData] attribute to provide input data to the test method.

•	 Test class: xUnit does not have a separate test fixture class like NUnit or MSTest. Instead, you can
define a test class with public methods that are marked with the [Fact] or [Theory] attribute.

•	 Constructor: xUnit supports a constructor for the test class. You can use the constructor to
set up common test data or objects that will be used across all test methods within the class.

•	 Dispose: xUnit supports a dispose method for the test class. This can be used to clean up test
data or objects after all tests within the class have been executed.

•	 Assert class: The Assert class provides a set of methods for testing conditions within your
tests. The most used methods include Assert.Equal, Assert.True, and Assert.
False. These methods allow you to test whether a value is equal to an expected value or
whether a condition is true or false.

•	 Skip attribute: The [Skip] attribute is used to mark a test method or test class as skipped.
This can be useful when you need to temporarily skip a test or group of tests.

•	 Trait attribute: The [Trait] attribute is used to mark a test method or test class with one or
more traits. Traits can be used to categorize tests for better reporting and filtering.

By understanding and using these attributes and terminology, you can write effective and efficient
tests using MSTest, NUnit, and xUnit in C#.

Note
You can understand the four-phase pattern of unit testing on the xUnit website: http://
xunitpatterns.com/Four%20Phase%20Test.html. As for test doubles, there is a good
article that you can read by Erik Dietrich: https://daedtech.com/introduction-
to-unit-testing-part-6-test-doubles/.

http://xunitpatterns.com/Four%20Phase%20Test.html
http://xunitpatterns.com/Four%20Phase%20Test.html
https://daedtech.com/introduction-to-unit-testing-part-6-test-doubles/
https://daedtech.com/introduction-to-unit-testing-part-6-test-doubles/

Unit Testing176

The following table maps the different test framework attributes to the relevant phase of the four-
phase test pattern:

Phase Description MSTest Attribute NUnit Attribute xUnit Attribute

Test Class
Initialization

Set up common
resources for all
tests in a test class

[ClassIni-
tialize]

[SetUpFix-
ture]

[Collec-
tionDefini-
tion]

Test
Initialization

Set up resources
needed for a
specific test

[TestIni-
tialize]

[SetUp]
[IUseFix-
ture]

Test
Execution

Run the actual
test logic

[TestMethod] [Test] [Fact]

Test
Cleanup

Tear down
resources after a
test has executed

[Test-
Cleanup]

[TearDown]
[IClassFix-
ture]

Table 6.3: Test framework attribute mapping to the four-phase testing pattern

Running tests in Visual Studio

In Visual Studio, you can use the built-in test runner to execute your tests and view the results. The
process involves a few steps:

1.	 Build your solution:

Before running tests, ensure that your solution is built successfully. You can build your solution
by pressing Ctrl + Shift + B or by selecting Build from the Build menu.

2.	 Open Test Explorer:

In Visual Studio, open the Test Explorer window. You can do this by going to Test | Test
Explorer or by using the Ctrl + E, T keyboard shortcut.

3.	 Discover tests:

Test Explorer will automatically discover and list all the test methods in your solution. If you
have just written new tests or made changes to existing ones, you may need to click the Refresh
icon in Test Explorer to ensure it’s up to date.

4.	 Run tests:

Select the tests you want to run, right-click, and choose Run Selected Tests. Alternatively, you
can run all tests in the solution by choosing Run All from the Test Explorer toolbar.

Writing effective unit tests 177

Here are the steps for viewing test results:

1.	 Test Explorer window:

As the tests run, you’ll see real-time updates in the Test Explorer window. Tests will be marked
with a status (Passed, Failed, Skipped, and so on) once they complete.

2.	 Output window:

Additional details about the test execution process and any test failures are often displayed in
the Output window. You can open the Output window by going to View > Output or using
the Ctrl + W, O shortcut.

3.	 Test results summary:

After the tests finish running, Test Explorer provides a summary of the results, including the
number of passed, failed, and skipped tests. You can also see the time it took to run the tests.

4.	 Detailed test results:

Double-clicking on a specific test in Test Explorer will open a detailed test results window. Here,
you can see the output, any error messages, and the stack trace for failed tests.

5.	 Live Unit Testing (optional):

Visual Studio Enterprise Edition includes a feature called Live Unit Testing, which provides
real-time feedback as you write or modify code. This feature automatically runs impacted tests
in the background, and you can see the results directly in the code editor.

By using Test Explorer and related features in Visual Studio, you can efficiently run your tests, monitor
their progress, and investigate any issues that arise during the testing process.

We have now been introduced to the different testing frameworks and seen how to run tests and
view the results in Visual Studio. So, let’s move on to understanding how to write effective unit tests.

Writing effective unit tests
Writing effective unit tests in C# involves several best practices and techniques that can help ensure that
your tests are reliable, maintainable, and useful. Here are some tips for writing effective unit tests in C#:

•	 Use a testing framework: Use a testing framework such as NUnit, MSTest, or xUnit to help
structure your tests and make them easier to write and maintain.

•	 Test only one thing at a time: Write tests that test only one aspect of your code at a time. This
will make your tests more focused and easier to debug.

•	 Use meaningful test names: Use names that describe what the test is testing. This will make it
easier to understand what each test is doing and to find tests that are failing.

Unit Testing178

•	 Use assertions: Use assertions to verify that the code being tested is behaving as expected.
Assertions can be used to check that a value is equal to an expected value or that a condition is
true or false. There are different assertion libraries available for writing readable assertions
such as NUnit, xUnit, Fluent Assertions, Shoudly, NSubstitute, and Moq.

•	 Test edge cases: Test edge cases such as null inputs, empty strings, and negative values to ensure
that your code handles these scenarios correctly.

•	 Use test data that covers all scenarios: Use test data that covers all possible scenarios, including
the most common and uncommon scenarios.

•	 Use DI: Use DI to make your code more testable. By injecting dependencies into your code,
you can easily swap out real dependencies with test doubles, such as mocks or stubs.

•	 Test in isolation: Test your code in isolation from other components to ensure that your tests
are repeatable and reliable.

•	 Use code coverage analysis: Use code coverage analysis to ensure that your tests are covering
all the code paths in your application.

•	 Keep your tests fast: Keep your tests fast by avoiding long-running tests and using test doubles
to isolate your code.

By following these best practices and techniques, you can write effective unit tests in C# that help
ensure that your code is reliable, maintainable, and bug-free.

Using code coverage analysis in Visual Studio 2022

Code coverage analysis is a technique used to measure how much of your code is executed by automated
tests. It can help you identify areas of your code that are not covered by tests, allowing you to write
more comprehensive test suites.

Visual Studio 2022 includes a built-in code coverage analysis tool that can be used to measure code
coverage for C# projects. Here’s how to use it:

1.	 Open your C# project in Visual Studio 2022.

2.	 Open the Test Explorer window by selecting Test | Test Explorer from the menu bar.

3.	 Select the tests that you want to run by selecting the checkbox next to each test. You can also
select all tests in a test class or project by right-clicking on the test class or project and selecting
Run Selected Tests.

4.	 Once you have selected the tests to run, right-click on the selected tests and select Analyze
Code Coverage | Selected Tests.

5.	 Visual Studio will now run the selected tests and generate a code coverage report. The code
coverage report will show you which lines of code were executed during the tests and which
lines were not executed.

Writing effective unit tests 179

6.	 You can view the code coverage report by selecting Test | Analyze Code Coverage | Current
Session from the menu bar. This will open the Code Coverage Results window, which displays
the code coverage results for the selected tests.

7.	 In the Code Coverage Results window, you can view a code coverage report for each class
and method in your project. You can also view the percentage of code coverage for each class
and method.

By using the code coverage analysis tool in Visual Studio 2022, you can ensure that your tests are
covering all the code paths in your application, helping you write more reliable and maintainable code.

Ensuring your unit tests themselves are correct

It is important to ensure that your unit tests themselves do not contain exceptions, as this can lead to
false positives or false negatives in your test results.

One way to ensure that your unit tests do not contain exceptions is to use a testing framework such
as NUnit, MSTest, or xUnit, which have built-in exception handling mechanisms. These frameworks
provide methods or attributes that you can use to handle exceptions in your tests and ensure that
they do not cause the test to fail.

Additionally, you can use code analysis tools such as ReSharper or CodeRush that can help identify
potential exceptions in your tests. These tools can analyze your code and highlight any lines of code
that may throw exceptions during execution.

Another way to ensure that your unit tests do not contain exceptions is to practice good code hygiene
and follow best practices for writing tests. For example, you should ensure that your test data is valid
and that your test methods are focused and only test one thing at a time. You should also use assertions
to verify that the code being tested is behaving as expected.

Finally, you can run your unit tests regularly and monitor their results to ensure that they are not
failing due to exceptions in the tests themselves. By following these best practices and techniques,
you can ensure that your unit tests are reliable and accurate, helping you write more robust and
maintainable code.

Using stubs in place of mocks

TDD is a software development methodology whereby you write your tests before writing the code
that will be tested. In this process, stubs and mocks are used as test doubles to mimic the behavior
of real objects.

Stubs are fake objects that return dummy test data. They do not affect the outcome of the test, and
their main purpose is to set up the test scenario. For example, if you have a method that needs to
fetch data from a database, you can use a stub to return a fixed set of data, allowing you to focus on
testing the logic that processes this data.

Unit Testing180

Mocks, on the other hand, are also fake objects, but they are used to verify that the unit under test
behaves as expected. A mock can make your test fail. It not only returns dummy data but also allows
you to check whether certain methods were called during the test.

Here’s a simple step-by-step example of using a stub in TDD with C#:

1.	 Write a failing test: Suppose you have a CalculateAverage() method in a
MathOperations class that calculates the average of a list of numbers fetched from a
database. You can write a test that checks whether this method returns the correct average
for a given list of numbers. Since you haven’t implemented the method yet, this test will fail.

2.	 Create a stub: To isolate the CalculateAverage() method from the database, you can
create a stub for the database service that returns a fixed list of numbers.

3.	 Make the test pass: Implement the CalculateAverage() method so that it correctly
calculates the average of the numbers returned by the stub. The test should now pass.

4.	 Refactor: Improve the code while keeping the functionality the same. The test should still pass
after refactoring.

When using a mock object, the steps are similar, but in step 1, the test would also specify the expected behavior,
such as which methods should be called on the mock object. In step 3, you would not only implement the
method to make the test pass but also check that the expected interactions with the mock object occurred.

While both stubs and mocks are used in TDD, stubs are used to provide known inputs for the
method under test, while mocks are used to verify interactions between the method under test and
its dependencies.

Mocking data

Mocking data is the process of creating test data that simulates the behavior of real data but is specifically
designed for use in unit tests. Mock data is typically created using a mocking framework, which allows
you to define the behavior of the mock data and control how it is generated.

Moq is a popular mocking library in C# for creating mock objects. Let’s create a simple example with
step-by-step instructions:

1.	 Create an interface:

Start by defining an interface that represents the behavior you want to mock:
public interface ICalculator
{
    int Add(int a, int b);
}

Writing effective unit tests 181

2.	 Create a class that uses the interface:

Create a class that depends on the ICalculator interface:
public class MathService
{
    private readonly ICalculator _calculator;
    public MathService(ICalculator calculator)
    {
        _calculator = calculator;
    }
   public int AddNumbers(int a, int b)
    {
       return _calculator.Add(a, b);
    }
}

3.	 Install Moq:

If you haven’t already, install the Moq NuGet package:
Install-Package Moq

4.	 Write the test:

Write a test where you mock the ICalculator interface using Moq:
using Moq;
using Xunit;
public class MathServiceTests
{
    [Fact]
    public void AddNumbers_ShouldReturnSum_
WhenUsingMockedCalculator()
    {
        // Arrange
        var calculatorMock = new Mock<ICalculator>();
        calculatorMock.Setup(calculator => calculator.Add(It.
IsAny<int>(), It.IsAny<int>()))
                      .Returns((int a, int b) => a + b);
        var mathService = new MathService(calculatorMock.
Object);
        // Act
        int result = mathService.AddNumbers(2, 3);
        // Assert
        Assert.Equal(5, result);
    }
}

Unit Testing182

The functions for the following elements are as follows:

	� Mock<ICalculator>: Creates a mock object for the ICalculator interface.

	� Setup: Configures the behavior of the mock. In this case, it’s set up to return the sum of
the two input parameters.

	� mathService.AddNumbers(2, 3): Calls the method being tested with the
mocked dependency.

	� Assert.Equal(5, result): Verifies that the result is as expected.

5.	 Run the test:

Execute the test to ensure that it passes.

This example demonstrates how to use Moq to mock an ICalculator interface and set up behavior
for testing a MathService class that depends on that interface. The key is to use Mock<T> to create
a mock object and then use Setup to define the behavior of the mock.

By using a mocking framework to create mock data, we can isolate our unit tests from external
dependencies and ensure that they are consistent and reliable. This allows us to test our code in a
controlled environment, making it easier to identify and fix bugs.

When mocking is challenging or not straightforward

There are certain situations where mocking can be challenging or not straightforward. One common
example is when working with HttpClient in C#.

The primary challenge with mocking HttpClient arises from the fact that it is a concrete class,
and its methods are not virtual, making it difficult to create a mock or substitute. Additionally,
HttpClient is designed to be long-lived and reused for multiple requests, which can lead to issues
with managing the state of the mock.

Here are a few common challenges and ways to overcome them when dealing with HttpClient:

•	 Non-virtual methods:

The methods in HttpClient are not virtual, so it’s not straightforward to create a mock
using traditional mocking frameworks such as Moq.

Solution:

Instead of directly mocking HttpClient, you can introduce an abstraction, such as an
interface or a delegate, that wraps the functionality you need. Then, use DI to provide an
implementation in your code and a mock implementation in your tests.

Create a client wrapper interface called HttpClientWrapper:
public interface IHttpClientWrapper
{

Writing effective unit tests 183

    Task<string> GetStringAsync(string requestUri);
}
public class MyHttpClientWrapper : IHttpClientWrapper
{
    private readonly HttpClient _httpClient;

    public MyHttpClientWrapper(HttpClient httpClient)
    {
        _httpClient = httpClient;
    }

    public async Task<string> GetStringAsync(string requestUri)
    {
        return await _httpClient.GetStringAsync(requestUri);
    }
}

Now, in your application code, use IHttpClientWrapper instead of directly
using HttpClient. In your tests, you can create a mock or a fake implementation
of IHttpClientWrapper.

•	 Managing the state of the HttpClient instance:

HttpClient is designed to be reused for multiple requests to take advantage of connection
pooling. Creating a new HttpClient instance for every request can lead to resource leakage.
However, reusing the same HttpClient instance in tests may cause unexpected behavior
due to shared state.

Solution:

Consider using a factory pattern to create instances of HttpClient in your application. This
way, you can control the creation of HttpClient instances, providing a new instance for
each request in your tests. Here’s how it’s done:

public interface IHttpClientFactory
{
    HttpClient CreateClient();
}
public class MyHttpClientFactory : IHttpClientFactory
{
    public HttpClient CreateClient()
    {
        return new HttpClient();
    }
}

Unit Testing184

In your application code, use IHttpClientFactory to create instances of HttpClient. In your
tests, you can provide a mock implementation of IHttpClientFactory to control the behavior
of HttpClient instances.

By introducing abstractions and using DI, you can make your code more testable and overcome the
limitations associated with mocking concrete classes such as HttpClient.

Integrating tests into the continuous integration and
deployment (CI/CD) pipeline
Integrating unit tests into your CI/CD pipeline can help ensure that your code is always tested and
that any changes made to the code base do not introduce new bugs. Here are some steps you can take
to integrate unit tests into your CI/CD pipeline:

1.	 Write your unit tests using a testing framework that can be automated, such as NUnit, MSTest,
or xUnit.

2.	 Set up a build server that can automatically run your unit tests whenever code changes are
made to your repository. Most build servers, such as Jenkins, Travis CI, GitHub Actions, and
Azure DevOps, support running unit tests as part of the build process.

3.	 Configure your build server to automatically build and test your code whenever new commits
are pushed to your repository. This will ensure that your unit tests are always up to date and
that your code is tested as soon as changes are made.

4.	 Set up a code coverage analysis tool to measure the effectiveness of your tests. Many testing
frameworks, such as NUnit and xUnit, come with built-in support for code coverage analysis.
You can also use third-party tools such as Coverlet or OpenCover.

5.	 Configure your build server to report the results of your unit tests and code coverage analysis.
Most build servers can generate reports or notifications that summarize the results of your
tests and code coverage analysis.

By following these steps, you can ensure that your code is always tested and that any issues are caught
early in the development process before they can cause problems in production. This can help improve
the quality of your code and reduce the risk of bugs and errors.

Integrating tests into an Azure DevOps CI/CD pipeline

Azure DevOps provides a complete suite of tools for managing your code and building, testing, and deploying
applications. Here’s how you can integrate unit tests into your CI/CD pipeline using Azure DevOps:

1.	 Create a build pipeline in Azure DevOps that compiles your code, runs your unit tests, and
generates code coverage reports. You can create a build pipeline from the Builds menu in the
Azure DevOps dashboard.

Integrating tests into the continuous integration and deployment (CI/CD) pipeline 185

2.	 Add a Test task to your build pipeline that runs your unit tests. Azure DevOps supports a
wide variety of testing frameworks, including NUnit, xUnit, and MSTest. You can configure
the Test task to run your tests as part of the build process.

3.	 Add a code coverage analysis task to your build pipeline that measures the effectiveness of
your tests. Azure DevOps supports code coverage analysis for a wide variety of programming
languages, including C#. You can configure the code coverage analysis task to generate reports
that show the percentage of code that is covered by your tests.

Configure your build pipeline to report the results of your tests and code coverage analysis. Azure
DevOps provides a variety of ways to report on the results of your tests, including charts and graphs
that show the percentage of tests that pass and fail, as well as reports that show the code coverage of
your tests. By following these steps, you can integrate unit tests into your CI/CD pipeline using Azure
DevOps. This will help ensure that your code is always tested and that any issues are caught early in
the development process before they can cause problems in production.

To finish, here is a simple example of a YAML pipeline that performs build, test, and code coverage
for a C# project:

trigger:
- main

pool:
  vmImage: 'windows-latest'

variables:
  buildConfiguration: 'Release'

steps:
- task: NuGetToolInstaller@1

- task: NuGetCommand@2
  inputs:
    restoreSolution: '**/*.sln'

- task: VSBuild@1
  inputs:
    solution: '**/*.sln'
    msbuildArgs: '/p:Configuration=$(buildConfiguration)
/p:CollectCoverage=true /p:CoverletOutputFormat=cobertura'
    platform: '$(BuildPlatform)'
    configuration: '$(BuildConfiguration)'

- task: VSTest@2
  inputs:
    platform: '$(BuildPlatform)'

Unit Testing186

    configuration: '$(BuildConfiguration)'

- task: PublishTestResults@2
  inputs:
    testRunner: VSTest
    testRunTitle: 'Test Results'
    testResultsFiles: '**/*.trx'
    failTaskOnFailedTests: true

- task: PublishCodeCoverageResults@1
  inputs:
    codeCoverageTool: 'Cobertura'
    summaryFileLocation: '$(System.DefaultWorkingDirectory)/**/
coverage.cobertura.xml'
    failIfCoverageEmpty: true

This pipeline does the following:

1.	 It triggers any push to the main branch.

2.	 It runs on the latest Windows VM.

3.	 It installs the latest version of NuGet.

4.	 It restores NuGet packages for the solution.

5.	 It builds the solution in the Release configuration. It also enables code coverage collection in
the Cobertura format.

6.	 It runs tests using the VSTest task.

7.	 It publishes the test results to Azure DevOps. The PublishTestResults@2 task is used
for this purpose. It expects test results in the .trx format.

8.	 It publishes the code coverage results to Azure DevOps. The PublishCodeCoverageResults@1
task is used for this purpose. It expects Cobertura formatted coverage data.

Problem tests
In the context of software testing, “test smells” refer to indicators that a test may have issues or could
be improved. These issues can affect the reliability and maintainability of the test suite. Here are some
common test smells and related concepts in the context of C#:

1.	 Fragility:

	� Description: Fragile tests are prone to break when the application undergoes changes, even
if the changes are unrelated to the functionality being tested.

	� Example: A test that breaks when non-essential UI changes are made.

Problem tests 187

2.	 Flakiness:

	� Description: Flaky tests produce different results under the same conditions. They may pass
or fail inconsistently, making it difficult to rely on their results.

	� Example: A test that passes sometimes and fails other times without any code changes.

3.	 Erratic tests:

	� Description: Erratic tests exhibit unpredictable behavior. They might produce different results
on different test runs or environments.

	� Example: A test that fails on a developer’s machine but passes on the build server.

4.	 Test interdependencies:

	� Description: Test interdependencies occur when the success or failure of one test is influenced
by the execution of another test.

	� Example: Test B fails because Test A did not clean up its test data properly.

5.	 Overuse of mocks or stubs:

	� Description: Overusing mocks or stubs can lead to tests that don’t accurately reflect how the
real components interact.

	� Example: Mocking every method call in a class, making the test too isolated from the actual
system behavior.

6.	 Brittleness:

	� Description: Brittle tests are overly sensitive to changes in the code or environment, leading
to frequent test failures.

	� Example: A test that fails when the order of execution (OOE) of other tests changes.

7.	 Test data issues:

	� Description: Tests that rely on specific data may become problematic if the data changes or
is not well maintained.

	� Example: A test that assumes a specific database state, which may change over time.

8.	 Hardcoding values:

	� Description: Hardcoding values in tests can make them less maintainable, especially if those
values change in the application.

	� Example: Asserting that a calculated value is exactly equal to a hardcoded constant.

Unit Testing188

To address these issues, consider the following best practices in C# testing:

	� Isolation of tests: Ensure tests are independent of each other and the OOE

	� Use of test data builders: Create flexible and maintainable test data using builders to avoid
relying on hardcoded data

	� Avoiding overuse of mocks: Mock only what is necessary for the specific test case, and favor
integration tests when appropriate

	� Regular maintenance: Update tests along with code changes and refactor them as needed
to keep them robust

	� Consistent environment setup: Ensure a consistent and reproducible test environment to
reduce flakiness

	� Clear and descriptive assertions: Use clear and descriptive assertions that focus on the
behavior being tested

By addressing these test smells and following best practices, you can create a more reliable and
maintainable test suite in C#.

That’s the end of the chapter, so let us summarize what we’ve learned.

Summary
In this conversation, we discussed several topics related to unit testing in C#, including the different
testing frameworks available (MSTest, NUnit, and xUnit), best practices for writing effective unit
tests, and techniques for mocking data in unit tests. We also covered the importance of code coverage
analysis and how to use it in Visual Studio 2022.

Overall, we emphasized the importance of writing clean and maintainable unit tests that are focused
on testing one specific piece of functionality and that use descriptive naming, assertions, and the AAA
pattern. We also stressed the importance of testing edge cases and exception handling, and of keeping
tests isolated from external dependencies using techniques such as DI and mocking.

By following these best practices and techniques, developers can ensure that their unit tests are
effective at identifying and fixing bugs in their production code and that their code is well tested,
maintainable, and robust.

In Chapter 7, we will be discussing the design and development of APIs. But before then, you can further
your reading on application testing and test your knowledge by answering the questions provided.

Questions 189

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 What are the different testing frameworks available for C# and what are their strengths
and weaknesses?

2.	 What are some best practices for writing effective unit tests in C#?

3.	 How can you mock data in unit tests to isolate external dependencies?

4.	 What is code coverage analysis and how can you use it in Visual Studio 2022 to improve the
quality of your tests?

5.	 How can you ensure that your unit tests themselves don’t contain exceptions?

Further reading
Here are some resources for further reading on application testing in C#:

•	 Microsoft’s official documentation on unit testing in Visual Studio: https://docs.microsoft.
com/en-us/visualstudio/test/unit-test-basics?view=vs-2022

•	 NUnit’s official documentation on testing in C#: https://docs.nunit.org/articles/
nunit/intro.html

•	 xUnit’s official documentation on testing in C#: https://xunit.net/#documentation

•	 An overview of code coverage analysis in Visual Studio: https://docs.microsoft.
com/en-us/visualstudio/test/using-code-coverage-to-determine-
how-much-code-is-being-tested?view=vs-2022

•	 A book on unit testing in C#: The Art of Unit Testing: with Examples in C# by Roy Osherove

https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2022
https://docs.nunit.org/articles/nunit/intro.html
https://docs.nunit.org/articles/nunit/intro.html
https://xunit.net/#documentation
https://docs.microsoft.com/en-us/visualstudio/test/using-code-coverage-to-determine-how-much-code-is-being-tested?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/test/using-code-coverage-to-determine-how-much-code-is-being-tested?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/test/using-code-coverage-to-determine-how-much-code-is-being-tested?view=vs-2022

7
Designing and Developing APIs

In this chapter, we will be looking at designing and developing APIs in C#. Today, APIs are used
everywhere, from your smartphone and watch to satellites in space. It pays to fully appreciate what
an API is, how APIs help consumers build apps, and what the difference between on-premises APIs
and cloud APIs is. Plus, you need a good handle on API security.

In this chapter, we will be covering the following topics:

•	 What is an API?: We will cover the definition, terminologies, and other aspects of understanding
what APIs are and their roles in clean code

•	 API development in C#: We will cover all the things we must consider when designing APIs

•	 Web API security with OWASP: We will cover the security implementation of OWASP in C#
with example source code

By the end of the chapter, you will be able to do the following:

•	 Describe an API

•	 Describe the differences between on-premises and cloud APIs

•	 Describe the API design process

•	 Implement OWASP security best practices to secure your APIs

Technical requirements
You will need the latest community edition of Visual Studio/Visual Code if you want to write the code
provided in this chapter. The code can be found at https://github.com/PacktPublishing/
Clean-Code-with-CSharp-Second-Edition/tree/main/CH07/CH07.

https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH07/CH07
https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH07/CH07

Designing and Developing APIs192

What is an API?
API stands for application programming interface. It is a set of rules and protocols that allows one
software application to interact with another. APIs define the methods and data formats that applications
can use to request and exchange information. They enable different software systems to communicate
with each other, making it possible for developers to use the functionality of one application in another.

APIs can be used for various purposes, including the following:

•	 Data retrieval: An API allows one application to request data from another. For example, a
weather application might use an API to fetch current weather data from a weather service.

•	 Functionality integration: APIs enable the integration of different software services. For
instance, a payment processing API allows an eCommerce website to securely process payments
using a third-party payment gateway.

•	 Automation: APIs facilitate automation by allowing different software components to communicate
and perform tasks without manual intervention. This is commonly seen in the integration of
various tools and services in a development or operations workflow.

•	 Accessing third-party services: Many companies provide APIs to allow developers to access
their services or data. For example, social media platforms often have APIs that allow developers
to integrate social features into their applications.

APIs can use various protocols for communication, including HTTP, Representational State Transfer
(REST), SOAP, and others. The choice of protocol often depends on the specific requirements of the
application and the services it interacts with. RESTful APIs, which use HTTP and are based on REST
principles, are quite common in web development due to their simplicity and scalability.

APIs help different consumers build loosely coupled applications

An API plays a crucial role in enabling smooth interaction and collaboration between different
software components or systems. When designed with loose coupling in mind, an API allows various
consumers to build applications smoothly. Here’s how:

•	 Decoupling of implementation details: An API abstracts away the underlying implementation
details of a system or service, exposing only the necessary functionalities. This separation allows
consumers to interact with the service without needing to understand or be dependent on the
internal workings of the provider.

•	 Interoperability: APIs facilitate interoperability by providing a standardized way for different
systems to communicate. This standardization ensures that so long as consumers adhere to the
API specifications, they can seamlessly integrate with the service, regardless of the technologies
used on either side.

What is an API? 193

•	 Flexibility and versioning: Loosely coupled APIs provide flexibility in the sense that changes
to the internal implementation of a service don’t necessarily impact the consumers. Consumers
interact with the API contract, and so long as the contract remains stable, they can upgrade or
change the underlying service without disrupting their applications.

•	 Scalability: APIs allow for scalable architectures by enabling the distribution of workloads. As
different components can interact through APIs, they can be deployed independently and scaled
horizontally, supporting the growth of the overall system without tightly coupling the components.

•	 Specialized functionality: APIs often expose specific functionalities or services, allowing
consumers to leverage specialized features without having to implement them from scratch.
This promotes code reuse and efficiency in application development.

•	 Technology diversity: Loosely coupled APIs enable diverse technologies to work together.
Consumers can choose the programming languages, frameworks, or platforms that best suit
their needs, so long as they adhere to the agreed-upon API specifications.

•	 Reduced dependencies: Since APIs abstract away the internal details of a service, consumers are less
dependent on the specific technologies or implementations used by the provider. This reduces the risk
of tight dependencies that can hinder the evolution of both the provider and consumer applications.

•	 Ease of maintenance: When an API is loosely coupled, updates or changes to the provider’s
service can be made without affecting the consumers, so long as the API contract remains intact.
This ease of maintenance is crucial for long-term sustainability and adaptability.

A well-designed API with loose coupling fosters a more agile and collaborative development environment.
It allows different consumers to build applications smoothly by providing a standardized interface,
abstracting away implementation details, and supporting flexibility, scalability, and interoperability.
This approach promotes modular, maintainable, and extensible software architectures.

Idempotent and non-idempotent operations

The term idempotent in the context of HTTP methods refers to the property that a certain operation
can be repeated multiple times with the same effect as if it were only performed once. In other words,
making the same request multiple times should produce the same result as making the request once.

Here’s a breakdown of the concept:

•	 Idempotent operation:

	� If an operation is idempotent, performing it multiple times has the same outcome as
performing it once

	� It doesn’t matter if the operation is repeated – the system’s state or the result remains the same

	� This property is particularly important in distributed systems and network communication
to ensure predictable and consistent behavior

Designing and Developing APIs194

•	 Examples:

	� GET: Retrieving data is an idempotent operation. Fetching the same resource multiple times
doesn’t change the resource on the server.

	� PUT: Updating a resource using PUT is idempotent. Repeatedly sending the same update
request won’t change the state beyond the first update.

	� DELETE: Deleting a resource is idempotent. If you delete a resource, it’s gone, and deleting
it again won’t change the fact that it’s gone.

•	 Not idempotent:

	� POST: Submitting a form or creating a new resource using POST is generally not idempotent.
Submitting the same POST request multiple times might result in the creation of multiple
resources or different outcomes.

•	 Why it matters:

	� In network communication, especially in scenarios where requests can be retried due to
network issues, having idempotent operations helps ensure that even if a request is duplicated,
the system remains in a consistent state.

Understanding whether an operation is idempotent is crucial for designing robust and predictable systems,
especially in the context of web APIs and distributed architectures. It allows developers to make informed
decisions about the appropriate HTTP methods to use based on the desired behavior of their applications.

HTTP verbs

Hypertext Transfer Protocol (HTTP) defines a set of request methods, often referred to as HTTP
verbs or HTTP methods. These methods indicate the desired action to be performed on a resource
identified by a given Uniform Resource Identifier (URI). Here are the primary HTTP verbs:

•	 GET:

	� Description: Retrieve data from the server

	� Example: Fetch the content of a web page, retrieve information from a database, and so on

	� Idempotent: Yes (repeating the same GET request multiple times has the same effect)

•	 POST:

	� Description: Submit data to be processed to a specified resource

	� Example: Submit a form, upload a file, or create a new resource on the server

	� Idempotent: No (repeating the same POST request may have different effects)

What is an API? 195

•	 PUT:

	� Description: Update a resource or create a new resource if it does not exist

	� Example: Update the details of a user, create a new record in a database, and so on

	� Idempotent: Yes (repeating the same PUT request has the same effect)

•	 PATCH:

	� Description: Apply partial modifications to a resource

	� Example: Update only specific fields of a resource without affecting the entire resource

	� Idempotent: No (repeating the same PATCH request may have different effects)

•	 DELETE:

	� Description: Request the removal of a resource

	� Example: Delete a user account, remove a record from a database, and so on

	� Idempotent: Yes (repeating the same DELETE request has the same effect)

•	 HEAD:

	� Description: Retrieve the headers of a resource, without the body content

	� Example: Check if a resource has been modified without downloading the entire content

	� Idempotent: Yes (repeating the same HEAD request has the same effect)

•	 OPTIONS:

	� Description: Get information about the communication options available for a resource

	� Example: Retrieve the allowed methods for a resource, discover cross-origin resource
sharing (CORS) policies, and so on

	� Idempotent: Yes (repeating the same OPTIONS request has the same effect)

•	 TRACE:

	� Description: Perform a message loop-back test along the path to the target resource

	� Example: Debugging and diagnostic purposes

	� Idempotent: Yes (repeating the same TRACE request has the same effect)

Designing and Developing APIs196

•	 CONNECT:

	� Description: Establish a network connection to a resource, typically for use with a proxy

	� Example: Establish a tunnel to the server identified by the target resource

	� Idempotent: No (repeating the same CONNECT request may have different effects)

Not all methods are used in typical web applications, and their usage depends on the desired actions
and the semantics of the application. Each HTTP method has its specific use cases, and adherence to
their intended purposes helps ensure a well-designed and RESTful API.

Important API design topics you must consider

API design is a crucial aspect of building successful and maintainable software systems. The following
design topics are essential considerations for creating effective APIs:

•	 Clarity:

	� Importance: Clarity ensures that the API is easy to understand, both in terms of its purpose
and how to use it. Well-documented and straightforward APIs reduce the learning curve
for developers and make integration more efficient.

	� Problems: Lack of clarity can lead to misunderstandings, increased development time, and
errors in implementation. It can hinder adoption and collaboration among developers.

•	 Consistency:

	� Importance: Consistency in API design promotes a unified and predictable experience for
developers. Uniformity in naming conventions, response formats, and endpoint structures
simplifies usage.

	� Problems: Inconsistent APIs can confuse developers, leading to errors and frustration. It
also complicates maintenance and may result in a steeper learning curve.

•	 Reusability:

	� Importance: Reusable components and patterns in API design enhance efficiency and reduce
redundancy. A well-designed API allows developers to leverage existing functionality across
different parts of an application or even in different projects.

	� Problems: Without a focus on reusability, developers may duplicate efforts, leading to code
bloat, increased maintenance, and a higher likelihood of introducing bugs.

What is an API? 197

•	 Testability:

	� Importance: APIs should be designed with testability in mind to ensure the reliability of the
services they provide. Testable APIs simplify the development of automated tests, aiding in
the identification of issues early in the development process.

	� Problems: Inadequate testability can result in undetected bugs, decreased software quality,
and increased difficulty in troubleshooting and debugging.

•	 Security:

	� Importance: Security is paramount in API design to protect sensitive data and prevent
unauthorized access. Proper authentication, authorization, and data encryption are
critical components.

	� Problems: Insecure APIs are vulnerable to data breaches, unauthorized access, and other
security threats, potentially leading to significant legal and financial consequences.

•	 Reliability:

	� Importance: Reliable APIs ensure consistent performance and availability. Redundancy,
error handling, and graceful degradation are essential considerations.

	� Problems: Unreliable APIs can disrupt services, lead to data loss, and damage the reputation
of the system. Downtime and service interruptions may have serious consequences for users
and stakeholders.

•	 Maintainability:

	� Importance: APIs should be designed for ease of maintenance to accommodate future
changes and updates. Clean code, modularization, and versioning strategies contribute
to maintainability.

	� Problems: Poorly maintainable APIs can become obsolete, challenging to update, and prone
to breaking changes. This can result in resistance to adopting new features or improvements.

•	 Observability:

	� Importance: Observability provides insights into the performance and behavior of an API.
Logging, monitoring, and metrics collection are crucial for understanding how the API is
used and identifying issues.

	� Problems: Lack of observability hinders the ability to diagnose problems, optimize performance,
and proactively address potential issues. It can lead to slower response times in identifying
and resolving issues.

Designing and Developing APIs198

In summary, neglecting these API design topics can lead to various problems, including the following:

•	 Increased development time: Developers may struggle to understand and use poorly designed
APIs, leading to increased development time

•	 Reduced adoption: Inconsistencies, lack of clarity, and poor documentation can discourage
developers from adopting and integrating with an API

•	 Security risks: Inadequate security measures can expose sensitive data, leading to security
breaches and legal consequences

•	 Unreliable services: Without a focus on reliability, APIs may experience downtime, affecting
the availability and performance of services

•	 Higher maintenance costs: Poorly maintainable APIs are more challenging and costly to
update, leading to resistance to making necessary improvements

Addressing these design topics from the outset is critical to building APIs that are robust, user-friendly,
and capable of supporting the evolving needs of both developers and the systems they interact with.

How can clean code help API design and development?

Clean code principles, as advocated by Robert C. Martin and other software engineering experts,
emphasize writing code that is easy to read, understand, and maintain. The application of clean code
practices is beneficial not only in general software development but also specifically in the context of
API design and development. Here’s how clean code can help in API development:

•	 Readability:

	� Benefit: Clean code is highly readable, making it easier for developers to understand the
logic and functionality of the API

	� Impact: Improved readability aids in faster onboarding for new developers, reduces the
chances of introducing bugs, and facilitates collaboration among team members

•	 Maintainability:

	� Benefit: Clean code is designed to be maintainable, making it easier to update, extend, and
modify as requirements evolve

	� Impact: An API built with maintainability in mind allows for seamless updates, reduces
technical debt, and makes it easier for developers to work on the code base over time

•	 Simplicity:

	� Benefit: Clean code promotes simplicity by avoiding unnecessary complexity and keeping
code concise

What is an API? 199

	� Impact: A simple API is easier to use and understand, reducing the likelihood of errors and
making it more accessible to a broader audience of developers

•	 Consistency:

	� Benefit: Clean code adheres to consistent coding styles and conventions, providing a uniform
experience for developers working on the API

	� Impact: Consistency in code style and structure makes it easier for multiple developers to
collaborate, reduces confusion, and improves the overall code base quality

•	 Reduced cognitive load:

	� Benefit: Clean code minimizes cognitive load by using meaningful names, proper organization,
and straightforward logic

	� Impact: Developers can focus more on the problem-solving aspect of API development
rather than grappling with complex or unclear code, leading to increased productivity

•	 Effective documentation:

	� Benefit: Clean code often requires less documentation because the code itself is self-explanatory

	� Impact: While documentation is crucial, having clean and self-explanatory code reduces
the reliance on extensive documentation, making the API more user-friendly

•	 Testability:

	� Benefit: Clean code is inherently more testable, allowing for the creation of robust test suites

	� Impact: Well-tested APIs are more reliable, as issues can be identified and addressed early
in the development process, reducing the likelihood of bugs in production

•	 Refactoring:

	� Benefit: Clean code facilitates easy refactoring, allowing developers to make changes without
fear of introducing errors

	� Impact: APIs that can be refactored easily are more adaptable to evolving requirements and
can be improved over time without disrupting existing functionality

•	 Collaboration:

	� Benefit: Clean code encourages collaboration among team members by providing a common
and easily understandable code base

	� Impact: Collaboration is more effective when developers can quickly grasp the purpose and
design of the API, leading to smoother development workflows

Designing and Developing APIs200

•	 Error handling:

	� Benefit: Clean code includes clear and effective error-handling mechanisms

	� Impact: Well-defined error handling in APIs improves robustness and helps developers
diagnose and address issues more efficiently

Applying clean code principles in API design and development contributes to better readability,
maintainability, and collaboration. It results in APIs that are more user-friendly, adaptable to change,
and less prone to errors, ultimately enhancing the overall quality of the software.

The API design process

The process of designing a successful API involves several key steps, from understanding requirements
to testing and documentation. Here’s a comprehensive guide to a successful API design process:

•	 Define the purpose and goals:

	� Objective: Clearly define the purpose of the API and its goals. Understand the problem it
aims to solve and the value it provides to users.

•	 Understand the users:

	� Objective: Identify the target audience and understand their needs. Know who will be
consuming the API and what kind of functionality they expect.

•	 Gather requirements:

	� Objective: Collect and document functional and non-functional requirements. Consider
factors such as performance, scalability, security, and integration with other systems.

•	 Design the data model:

	� Objective: Define the data structures and entities that the API will handle. Design a clear
and intuitive data model that aligns with the requirements.

•	 Choose the right protocols and standards:

	� Objective: Select appropriate communication protocols (for example, HTTP/HTTPS), data
formats (for example, JSON, XML, and so on), and any relevant industry standards.

•	 Design endpoints:

	� Objective: Define the API’s endpoints that represent the various functionalities. Clearly
articulate the request and response structures for each endpoint.

What is an API? 201

•	 Handle authentication and authorization:

	� Objective: Implement secure authentication and authorization mechanisms. Decide whether
the API will use API keys, OAuth, or other authentication methods.

•	 Implement error handling:

	� Objective: Design a robust error-handling strategy. Provide meaningful error messages,
status codes, and guidance for developers in case of issues.

•	 Prioritize simplicity and consistency:

	� Objective: Keep the API design simple, intuitive, and consistent. Follow established conventions
and naming patterns to enhance developer experience.

•	 Consider versioning:

	� Objective: Plan for versioning to accommodate future changes without breaking existing
implementations. Decide whether to include the version in the URL or headers.

•	 Think about pagination and filtering:

	� Objective: If the API deals with large datasets, design mechanisms for pagination and filtering
to improve performance and user experience

•	 Address security concerns:

	� Objective: Implement security best practices, including data encryption, secure connections
(HTTPS), and protection against common vulnerabilities such as SQL injection and cross-
site scripting (XSS)

•	 Test thoroughly:

	� Objective: Conduct comprehensive testing, including unit testing, integration testing, and
performance testing. Ensure that the API functions as expected and can handle various scenarios.

•	 Document extensively:

	� Objective: Create clear and comprehensive documentation for the API. Include details about
endpoints, request and response formats, authentication, error handling, and usage examples.

•	 Provide code samples and SDKs:

	� Objective: If possible, offer code samples and software development kits (SDKs) in popular
programming languages to simplify integration for developers

Designing and Developing APIs202

•	 Implement rate limiting:

	� Objective: If applicable, implement rate limiting to prevent abuse and ensure fair usage of
the API resources

•	 Plan for monitoring and analytics:

	� Objective: Set up monitoring tools and analytics to track API usage, identify performance
bottlenecks, and gather insights for future improvements

•	 Prepare to scale:

	� Objective: Design the API to scale horizontally and vertically. Consider potential bottlenecks
and plan for additional resources as usage grows.

•	 Launch and iterate:

	� Objective: Launch the API and gather feedback from users. Iterate on the design based on
real-world usage and evolving requirements.

•	 Maintain and support:

	� Objective: Provide ongoing support, address issues promptly, and consider future enhancements.
Regularly update documentation and communicate changes to users.

By following a systematic and thoughtful API design process, you increase the likelihood of creating a
successful, user-friendly, and maintainable API that meets the needs of both developers and the business.

API security risks and their mitigations

API security is crucial to protect the integrity, confidentiality, and availability of data and services
that are exchanged between different software applications. Here are some common API security
risks and their mitigations:

1.	 Unauthorized access and authentication issues:

I.	 Risk: If an API is not properly secured, unauthorized users might gain access to sensitive
data or perform actions they shouldn’t be allowed to

II.	 Mitigations:

	� Use strong authentication mechanisms such as API keys, OAuth, or JSON Web Tokens (JWT)

	� Implement proper access controls and authorization mechanisms to restrict access based
on roles and permissions

What is an API? 203

2.	 Data exposure and lack of encryption:

I.	 Risk: Transmitting data in an unencrypted format can lead to data exposure and
potential breaches

II.	 Mitigations:

	� Use HTTPS (TLS/SSL) to encrypt data in transit

	� Employ encryption for sensitive data at rest

	� Implement secure coding practices to avoid unintentional data exposure

3.	 Injection attacks:

I.	 Risk: Malicious users might inject harmful code (for example, via SQL injection) through
API requests, compromising the underlying system

II.	 Mitigations:

	� Use parameterized queries to prevent SQL injection

	� Validate and sanitize input data to mitigate injection attacks

	� Employ web application firewalls (WAFs) to filter and monitor HTTP traffic

4.	 Denial of service (DoS) attacks:

I.	 Risk: Attackers may overwhelm the API with a high volume of requests, causing it to
become slow or unresponsive

II.	 Mitigations:

	� Implement rate limiting to control the number of requests from a single client

	� Use load balancers to distribute traffic and mitigate the impact of DoS attacks

	� Monitor and analyze traffic patterns to detect and mitigate abnormal behavior

5.	 Insecure direct object references (IDOR):

I.	 Risk: Improperly implemented access controls may allow attackers to access
unauthorized resources.

II.	 Mitigations:

	� Implement proper authorization checks to ensure users can only access their own data

	� Use unique identifiers instead of predictable sequential IDs

Designing and Developing APIs204

6.	 Lack of logging and monitoring:

I.	 Risk: Without proper logging and monitoring, it becomes challenging to detect and
respond to security incidents

II.	 Mitigations:

	� Implement comprehensive logging of API activities

	� Set up real-time monitoring to detect unusual patterns or behavior

	� Regularly review logs and generate alerts for suspicious activities

7.	 Insufficient rate limiting:

I.	 Risk: Without proper rate limiting, APIs are vulnerable to abuse, leading to performance
issues or data breaches

II.	 Mitigations:

	� Implement rate limiting to control the number of requests per minute or hour

	� Use token buckets or sliding window algorithms to manage rate limits

8.	 Broken function-level authorization:

I.	 Risk: Inadequate enforcement of function-level access controls may lead to unauthorized
access to specific API functionalities

II.	 Mitigations:

	� Implement proper role-based access controls

	� Regularly audit and review access permissions to ensure they align with the principle of
least privilege

9.	 Insecure third-party integrations:

I.	 Risk: Security vulnerabilities in third-party APIs or libraries can expose the entire
system to risks

II.	 Mitigations:

	� Keep third-party components up to date with the latest security patches

	� Vet and monitor the security posture of third-party APIs before integrating them

10.	 Inadequate error handling:

I.	 Risk: Improper error handling may reveal sensitive information to attackers

What is an API? 205

II.	 Mitigations:

	� Implement generic error messages to avoid exposing sensitive details

	� Log errors internally while presenting user-friendly error messages to clients

It’s important to note that API security is an ongoing process, and organizations should regularly
assess and update their security measures to adapt to evolving threats. Security best practices should
be integrated into the development life cycle, and continuous monitoring is essential to identify and
address new vulnerabilities promptly.

On-premises APIs versus cloud APIs

On-premises APIs and cloud APIs refer to where the API infrastructure is hosted and managed. Let’s
break down the differences between the two, along with their respective pros and cons, including
security considerations.

On-premises APIs

•	 Definition: On-premises APIs are hosted on servers and infrastructure within an organization’s
physical location or data center. The organization has complete control over the servers, network,
and overall infrastructure.

•	 Pros:

	� Control: Organizations have full control over hardware, software, and network configurations

	� Customization: Tailor-made solutions can be implemented to meet specific security and
compliance requirements

	� Performance: On-premises solutions may offer lower latency and faster response times since
the infrastructure is within the organization’s premises

•	 Cons:

	� Cost: Higher upfront costs for hardware, software, and ongoing maintenance

	� Scalability: Scaling up requires additional hardware purchases and may take longer

	� Maintenance: Organizations are responsible for all maintenance tasks, including security
updates and patches

•	 Security pros and cons:

	� Pros:

	� Control: Direct control over security measures and configurations

	� Isolation: Greater ability to implement physical security measures

Designing and Developing APIs206

	� Cons:

	� Responsibility: Organizations are solely responsible for all security aspects, which may
be challenging for smaller entities

	� Updates: Timely application of security updates depends on the organization’s diligence

Cloud APIs

•	 Definition: Cloud APIs are hosted on servers provided by a third-party cloud service provider.
The infrastructure is off-site and accessed via the internet.

•	 Pros:

	� Cost: Lower upfront costs as organizations don’t need to invest in physical hardware

	� Scalability: Easily scale resources up or down based on demand

	� Maintenance: The cloud provider handles infrastructure maintenance and updates

•	 Cons:

	� Dependency: Organizations rely on the cloud service provider’s infrastructure and
service availability

	� Limited customization: Some organizations may find it challenging to implement highly
customized solutions due to cloud provider limitations

	� Data transfer costs: Costs may be incurred for data transfer between the organization and
the cloud provider

•	 Security pros and cons:

	� Pros:

	� Expertise: Cloud providers often have dedicated security teams and expertise

	� Compliance: Many cloud providers comply with industry-specific security standards

	� Cons:

	� Dependence: Security relies on the cloud provider’s practices, and organizations need to
trust the provider’s security measures

	� Data location: Concerns about data residing in different geographical locations, potentially
subject to different legal jurisdictions

Security considerations

1.	 Data encryption: Both on-premises and cloud solutions should implement strong encryption
protocols for data in transit and at rest

API development in C# 207

2.	 Access control: Implement robust access controls to ensure that only authorized individuals
or systems can interact with the API

3.	 Audit logging: Both environments should maintain detailed logs for monitoring and
auditing purposes

4.	 Compliance: Ensure that the chosen solution aligns with relevant industry compliance standards
(for example, GDPR, HIPAA, and so on)

5.	 Incident response: Have a well-defined incident response plan to address security breaches promptly

Ultimately, the choice between on-premises and cloud APIs depends on an organization’s specific
requirements, resources, and strategic goals.

API development in C#
API development in C# typically involves creating web services using a framework such as ASP.NET
Web API or ASP.NET Core. These frameworks provide the tools and infrastructure needed to build
robust and scalable APIs. Here’s a general overview of the steps involved in API development in C#:

•	 Choose a framework:

	� Options: ASP.NET Web API (for traditional .NET Framework) or ASP.NET Core (for
cross-platform development)

	� Selection criteria: Consider factors such as platform compatibility, performance, and
feature sets

•	 Set up your development environment:

	� Install tools: Install Visual Studio, the primary IDE for C# development

	� Create a project: Use Visual Studio to create a new ASP.NET Web API or ASP.NET Core project

•	 Define the API structure:

	� Create controllers: In ASP.NET, controllers handle incoming requests and produce responses. In
ASP.NET Core, these are typically derived from Controller or ControllerBase classes.

	� Define endpoints: Use attributes such as [HttpGet], [HttpPost], and so on to define
HTTP methods and their corresponding endpoints.

•	 Model your data:

	� Create models: Define data models or classes that represent the structure of the data you
will handle in your API

Designing and Developing APIs208

•	 Implement CRUD operations:

	� Controller methods: Write methods in your controller to handle Create, Read, Update,
and Delete (CRUD) operations

	� Use HTTP verbs: Decorate methods with attributes such as [HttpGet], [HttpPost],
and so on to specify the HTTP verb they respond to

•	 Handle routing:

	� Attribute routing: Use attribute routing to define custom route templates for your endpoints

•	 Implement validation:

	� Input validation: Validate input data using attributes such as [Required] ,
[StringLength], and so on or custom validation logic

•	 Implement authentication and authorization:

	� Identity framework: Utilize ASP.NET Identity for user management

	� Authorization attributes: Use attributes such as [Authorize] to control access to
API endpoints

•	 Handle errors:

	� Global exception handling: Implement global exception handling to provide consistent
error responses

	� Use HTTP status codes: Return appropriate HTTP status codes for different scenarios

•	 Add middleware:

	� Configure middleware: Use middleware components to add cross-cutting concerns such
as logging, CORS, and so on

•	 Implement versioning:

	� Choose a versioning strategy: Decide on API versioning (URL-based, header-based, and
so on) and implement it

•	 Testing:

	� Unit testing: Write unit tests for your controller methods using testing frameworks such
as MSTest, NUnit, or xUnit

	� Integration testing: Conduct integration tests to ensure the entire API works as expected

API development in C# 209

•	 Documentation:

	� Use Swagger/OpenAPI: Integrate Swagger or OpenAPI to automatically generate
API documentation

	� XML comments: Add XML comments to your code for better documentation generation

•	 Implement security:

	� HTTPS: Enforce the use of HTTPS to secure data in transit

	� Secure APIs: Implement security best practices, such as input validation, to protect against
common vulnerabilities

•	 Configure dependency injection:

	� Use a dependency injection container: Configure and use the built-in dependency injection
container to manage dependencies

•	 Optimize performance:

	� Caching: Implement caching mechanisms where applicable to improve performance

	� Asynchronous programming: Utilize async/await patterns for I/O-bound operations to
improve responsiveness

•	 Logging and monitoring:

	� Integrate logging: Use logging frameworks such as Serilog or NLog for logging

	� Set up monitoring: Implement monitoring tools to track API usage and identify
performance issues

•	 Deploy the API:

	� Choose a hosting environment: Deploy to IIS, Azure, Docker, or another hosting environment
based on your requirements

	� Configure deployment settings: Set up environment-specific configurations

•	 Continuous integration/continuous deployment (CI/CD):

	� Set up a CI/CD pipeline: Implement a CI/CD pipeline for automated testing and deployment

Designing and Developing APIs210

•	 Scale and maintain:

	� Scaling strategies: Plan for scalability using strategies such as load balancing, caching, and
efficient database access

	� Ongoing maintenance: Regularly update dependencies, address security vulnerabilities,
and implement enhancements based on user feedback

By following these steps, you can develop a robust and well-structured API in C# that meets the needs
of your users and the requirements of your application.

Web API security with OWASP
OWASP stands for Open Web Application Security Project and is a nonprofit organization that
focuses on improving the security of software. It provides freely accessible resources and tools to
help organizations and developers build secure applications. OWASP collaborates with the security
community and provides guidance on best practices for securing web applications and APIs.

The OWASP Top 10 is a regularly updated document that highlights the most critical security risks
to web applications. It is widely recognized as a valuable resource for understanding and mitigating
common security vulnerabilities. The list is compiled based on input from security experts globally
and is intended to raise awareness about the most significant threats.

The OWASP Top 10 typically includes vulnerabilities such as injection attacks, broken authentication,
security misconfigurations, and more. Developers and security professionals use the OWASP Top 10
as a guide to prioritize their efforts in securing web applications.

The OWASP API Security Project focuses specifically on addressing security concerns related to APIs.
As modern applications increasingly rely on APIs to communicate and share data, securing these
interfaces is of paramount importance. The project provides resources, tools, and best practices to
help organizations and developers secure their APIs effectively.

The OWASP API Security Project covers various aspects of API security, including authentication
mechanisms, authorization, data protection, and addressing common API vulnerabilities. The project
aims to create awareness about API security risks and provide practical guidance on mitigating those risks.

Importance of OWASP adherence in C# API development

For C# API development, adherence to OWASP guidelines and best practices is crucial for several reasons:

•	 Risk mitigation: Following OWASP guidelines helps mitigate common security risks and
vulnerabilities associated with web applications and APIs, reducing the likelihood of exploitation.

•	 Compliance: Many industries and organizations have compliance requirements that mandate
adherence to security standards. Following OWASP guidelines contributes to compliance with
security standards and regulations.

Web API security with OWASP 211

•	 User trust: Secure APIs enhance user trust by protecting sensitive data and ensuring the
confidentiality, integrity, and availability of services.

•	 Application longevity: Adhering to OWASP best practices helps ensure the longevity of your
C# API by making it more resilient to emerging security threats and reducing the need for
frequent security patches.

•	 Developer awareness: The OWASP API Security Project serves as a valuable resource for
developers, raising awareness about the importance of API security and providing practical
guidance for implementation.

•	 Community support: Being part of the larger OWASP community provides access to resources,
tools, and a network of security professionals. This collaborative environment can be beneficial
for addressing security challenges in C# API development.

•	 Continuous improvement: OWASP regularly updates its resources and guidance based on
the evolving threat landscape. By staying informed about the latest recommendations, C# API
developers can continuously improve the security posture of their applications.

Note
You can find out more about OWASP at https://owasp.org/www-project-api-
security/.

Leveraging OWASP resources and following the guidelines from the OWASP API Security Project
is essential for securing C# APIs. It helps developers identify and address security risks, build more
robust applications, and contribute to a global effort to enhance the overall security of software systems.

Creating an OWASP-compliant API

Creating a step-by-step OWASP-compliant API involves several considerations. We will step through the
process with explanations for each step. For brevity, we’ll focus on key aspects, such as authentication,
input validation, and secure communication:

1.	 Step 1 – set up a new ASP.NET Core Web API project: Create a new ASP.NET Core Web API
project in Visual Studio or your preferred IDE. Ensure you have the necessary dependencies
and configure your project.

2.	 Step 2 – add Swagger for API documentation: Use the Swashbuckle.AspNetCore NuGet package
to integrate the Swagger for API documentation in the Startup class:

public void ConfigureServices(IServiceCollection services)
{
 // Other configurations...
 // Add Swagger
 services.AddSwaggerGen(c =>

https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/

Designing and Developing APIs212

 {
 c.SwaggerDoc(“v1”, new OpenApiInfo { Title = “My API”,
Version = “v1” });
 });
}
public void Configure(IApplicationBuilder app,
IHostingEnvironment env)
{
 // Other configurations...
 // Enable Swagger middleware
 app.UseSwagger();
 app.UseSwaggerUI(c =>
 {
 c.SwaggerEndpoint(“/swagger/v1/swagger.json”, “My API
V1”);
 });
}

This code configures Swagger in your ASP.NET Core project, making it accessible at /swagger.

1.	 Step 3 – implement JWT authentication: For OWASP compliance, consider using JWT for
authentication, configuring the tokens in the Startup class:

// Install necessary NuGet packages: Microsoft.AspNetCore.
Authentication.JwtBearer
// In Startup.cs
public void ConfigureServices(IServiceCollection services)
{
 // Other configurations...

 // Add authentication
 services.AddAuthentication(JwtBearerDefaults.
AuthenticationScheme)
 .AddJwtBearer(options =>
 {
 options.TokenValidationParameters = new
TokenValidationParameters
 {
 ValidateIssuer = true,
 ValidateAudience = true,
 ValidateLifetime = true,
 ValidateIssuerSigningKey = true,
 ValidIssuer = “your-issuer”,
 ValidAudience = “your-audience”,
 IssuerSigningKey = new
SymmetricSecurityKey(Encoding.UTF8.GetBytes(“your-secret-key”))

Web API security with OWASP 213

 };
 });
}

Replace placeholders such as “your-issuer”, “your-audience”, and “your-secret-
key” with your specific values.

2.	 Step 4 – secure API endpoints: Apply the [Authorize] attribute to secure specific endpoints
or controllers:

[ApiController]
[Route(“api/[controller]”)]
[Authorize] // Requires authentication for all actions in this
controller
public class MyController : ControllerBase
{
 [HttpGet]
 public IActionResult Get()
 {
 // Your implementation
 }
 [HttpPost]
 public IActionResult Post([FromBody] MyModel model)
 {
 // Your implementation
 }
}

3.	 Step 5 – implement input validation: Use data annotations for input validation:

public class MyModel
{
 [Required]
 public string Name { get; set; }
 [EmailAddress]
 public string Email { get; set; }
}

This ensures that the Name property is required and that the Email property must be a valid
email address.

4.	 Step 6 – write unit tests: Write unit tests using a testing framework such as xUnit:

public class MyControllerTests
{
 [Fact]
 public void Get_ReturnsOkResult()

Designing and Developing APIs214

 {
 // Arrange
 var controller = new MyController();
 // Act
 var result = controller.Get();
 // Assert
 Assert.IsType<OkResult>(result);
 }
 [Fact]
 public void Post_WithValidModel_
ReturnsCreatedAtActionResult()
 {
 // Arrange
 var controller = new MyController();
 var validModel = new MyModel { Name = “John Doe”, Email
= “john.doe@example.com” };
 // Act
 var result = controller.Post(validModel);
 // Assert
 var createdAtActionResult = Assert.
IsType<CreatedAtActionResult>(result);
 Assert.Equal(“ActionName”, createdAtActionResult.
ActionName);
 }
}

5.	 Step 7 – testing with Postman:

	� Obtain a JWT token:

	� Use an authentication endpoint to obtain a JWT token. This typically involves sending a
POST request with valid credentials.

	� Extract the token from the response.

	� Set up authorization in Postman:

	� In Postman, set up authorization for your requests using the obtained JWT token. You can
usually add it to the request headers using the Bearer Token option.

	� Test endpoints:

	� Send requests to your secured API endpoints using Postman.

	� Verify that the responses match your expectations and that the security mechanisms are
working as intended.

Web API security with OWASP 215

Remember to adapt these steps and code snippets to your specific requirements and security policies.
OWASP compliance is an ongoing process, so stay updated on security best practices and adapt your
API accordingly.

Implementing OWASP-compliant two-factor authentication (2FA)

Implementing 2FA involves adding an additional layer of security to the authentication process,
typically requiring users to provide a second form of verification in addition to their password. Here
is a step-by-step walkthrough of creating a 2FA method for securing a C# API while aiming for
OWASP compliance:

1.	 Set up your ASP.NET Core Web API project: Create a new ASP.NET Core Web API project
in Visual Studio or your preferred IDE.

2.	 Install the required NuGet packages: Install the necessary packages for implementing 2FA.
For this example, we’ll use ASP.NET Core Identity and Google Authenticator:

dotnet add package Microsoft.AspNetCore.Identity
dotnet add package OtpNet

3.	 Set up ASP.NET Core Identity: Configure ASP.NET Core Identity in your Startup class so
that you can manage user authentication and identity-related operations:

public void ConfigureServices(IServiceCollection services)
{
 // Other configurations...
 Services.AddDbContext<ApplicationDbContext>(
 options => options.UseSqlServer(
 Configuration.GetConnectionString(
 “DefaultConnection”)
)
);
 services.AddDefaultIdentity<IdentityUser>(
 options => options.SignIn
 .RequireConfirmedAccount = true
).AddEntityFrameworkStores<ApplicationDbContext>();
}

4.	 Enable 2FA: Enable 2FA for users in the IdentityUser class:

public class ApplicationUser : IdentityUser
{
 [PersonalData]
 public string TwoFactorSecretKey { get; set; }
}

Designing and Developing APIs216

5.	 Generate and store a secret key: When a user registers, generate a secret key for 2FA and
store it securely:

// In your registration logic
var user = new ApplicationUser { UserName = email, Email = email
};
var result = await _userManager.CreateAsync(user, password);
if (result.Succeeded)
{
 // Generate and store secret key
 var secretKey = KeyGeneration.GenerateRandomKey(20);
 user.TwoFactorSecretKey = Base32Encoding.
ToString(secretKey);
 await _userManager.UpdateAsync(user);
}

6.	 Implement 2FA setup: Allow users to set up 2FA in your user profile or settings controller:

public IActionResult EnableTwoFactorAuthentication()
{
 var user = await _userManager.GetUserAsync(User);
 var model = new EnableTwoFactorAuthViewModel {
 HasAuthenticator = await _userManager
 .GetAuthenticatorKeyAsync(user) != null
 };
 return View(model);
}
[HttpPost]
public async Task<IActionResult> EnableTwoFactorAuthentication(
 EnableTwoFactorAuthViewModel model)
{
 if (!ModelState.IsValid)
 return View(model);
 var user = await _userManager.GetUserAsync(User);
 var verificationCode = model.Code.Replace(“ “, string.
Empty).Replace(“-”, string.Empty);
 var isCodeValid = await _userManager.
VerifyTwoFactorTokenAsync(user, _userManager.Options.Tokens.
AuthenticatorTokenProvider, verificationCode);
 if (!isCodeValid) {
 ModelState.AddModelError(string.Empty, “Verification
code is invalid.”);
 return View(model);
 }
 await _userManager.SetTwoFactorEnabledAsync(user, true);
 return RedirectToAction(

Web API security with OWASP 217

 “EnableTwoFactorAuthentication”);
}

7.	 Implement 2FA login: Modify the login process so that it includes 2FA within your login logic:

var result = await _signInManager.PasswordSignInAsync(model.
Email, model.Password, model.RememberMe, lockoutOnFailure:
true);
if (result.Succeeded)
{
 var user = await _userManager.FindByEmailAsync(model.Email);
 if (await _userManager.GetTwoFactorEnabledAsync(user))
 {
 if (!await _userManager.GetTwoFactorClientAsync(user,
“Authenticator”))
 {
 return
RedirectToAction(“EnableTwoFactorAuthentication”);
 }
 return RedirectToAction(“TwoFactorAuthentication”);
 }
 // Handle regular login success
}
// Handle other login results

8.	 Implement 2FA verification: Create a method for users to verify their 2FA in your controller:

public IActionResult TwoFactorAuthentication()
{
 return View();
}
[HttpPost]
public async Task<IActionResult>
TwoFactorAuthentication(TwoFactorAuthViewModel model)
{
 if (!ModelState.IsValid)
 {
 return View(model);
 }
 var user = await _signInManager.
GetTwoFactorAuthenticationUserAsync();
 var verificationCode = model.Code.Replace(“ “, string.
Empty).Replace(“-”, string.Empty);
 var isCodeValid = await _userManager.
VerifyTwoFactorTokenAsync(user, _userManager.Options.Tokens.
AuthenticatorTokenProvider, verificationCode);
 if (!isCodeValid)

Designing and Developing APIs218

 {
 ModelState.AddModelError(string.Empty, “Verification
code is invalid.”);
 return View(model);
 }
 await _signInManager.SignInAsync(user, model.RememberMe);
 return RedirectToAction(“Index”);
}

9.	 Implement 2FA recovery: Implement a recovery mechanism for 2FA in your user profile
settings controller (optional):

public IActionResult ResetTwoFactorAuthentication()
{
 return View();
}
[HttpPost]
public async Task<IActionResult> ResetTwoFactorAuthentication()
{
 var user = await _userManager.GetUserAsync(User);
 await _userManager.ResetAuthenticatorKeyAsync(user);
 return RedirectToAction(“EnableTwoFactorAuthentication”);
}

10.	 Test with Postman:

I.	 Register a user: Use a POST request to your registration endpoint to create a user.

II.	 Enable 2FA: Use a POST request to enable a 2FA endpoint that will enable 2FA for the
registered user.

III.	 Login: Use a POST request to your login endpoint, providing the username, password,
and 2FA code.

IV.	 2FA setup: Send a GET request to your 2FA setup endpoint to check if the user has set
up 2FA.

V.	 Reset 2FA (optional): Use a POST request to reset the 2FA endpoint to reset the user’s 2FA.

Ensure that your Postman requests include appropriate headers and follow the API’s authentication
and authorization requirements.

This example provides a basic implementation of 2FA in an ASP.NET Core API. Depending on your
application’s requirements and the desired level of security, you may need to adjust and enhance this
implementation. Additionally, ensure that your code complies with OWASP security guidelines and
regularly update dependencies to address any security vulnerabilities.

Web API security with OWASP 219

OpenID Connect (OIDC) and OAuth 2.0 (OAuth2)

OIDC and OAuth2 are protocols that play essential roles in modern authentication and authorization
systems. They are often used together, and both contribute to the security of web applications. Here’s
an overview of each.

OAuth 2.0 (OAuth2)

•	 Definition: OAuth 2.0 is an open standard protocol that allows secure authorization between
applications. It enables third-party applications to obtain limited access to a user’s resources
without exposing their credentials.

•	 Key components:

	� Resource owner: The entity that owns the resources (usually a user)

	� Client: The application that requests access to resources on behalf of the resource owner

•	 Authorization server: The server that authenticates the resource owner and issues access
tokens after getting authorization.

•	 Resource server: The server hosting the protected resources. It is capable of accepting and
responding to protected resource requests using access tokens.

•	 Flows: OAuth2 defines various grant types or flows, including Authorization Code, Implicit,
Resource Owner Password Credentials, and Client Credentials.

OpenID Connect (OIDC)

•	 Definition: OpenID Connect is an identity layer built on top of OAuth 2.0. It allows clients to verify
the identity of the end user based on the authentication performed by an authorization server.

•	 Key components:

	� ID token: A JWT containing identity information about the authenticated user

	� UserInfo endpoint: An endpoint where additional user claims can be retrieved
after authentication

•	 Roles:

	� Relying party (RP): The client application that relies on the identity provider for authentication

	� OpenID provider (OP): The identity provider that authenticates the user and provides
identity information

Relationship with OWASP

OWASP is a nonprofit organization that focuses on improving the security of software. It provides
resources, tools, and best practices to help developers build secure applications.

Designing and Developing APIs220

Relationship with OAuth2 and OIDC

OAuth2 and OIDC are important components of secure web application development, and they align
with several key OWASP security principles:

•	 Authentication and authorization: OAuth2 and OIDC address authentication and authorization
concerns, providing a standardized way to secure access to resources and authenticate users.

•	 Secure communication: Both protocols emphasize secure communication. OAuth2
tokens, especially when used with HTTPS, help protect against eavesdropping and
man-in-the-middle attacks.

•	 Protecting user credentials: OAuth2 enables access without exposing user credentials to
third-party applications. This aligns with OWASP’s recommendations to avoid exposing
sensitive information.

•	 Session management: OIDC, through the ID token and UserInfo endpoint, provides a structured
way to manage user sessions securely.

•	 Reducing credential exposure: OAuth2’s Authorization Code flow helps in reducing the exposure
of user credentials by allowing authorization without exposing the user’s password directly.

•	 Secure token storage: Proper handling of tokens, such as access tokens and ID tokens, is crucial
for security. This aligns with OWASP principles related to secure storage and management of
sensitive information.

•	 Protection against CSRF and clickjacking: Proper implementation of OAuth2 and OIDC helps
mitigate CSRF and clickjacking attacks, which are concerns highlighted by OWASP.

•	 Standardized security practices: OAuth2 and OIDC provide standardized security practices for
authentication and authorization, contributing to a more consistent and robust security posture.

Developers and security professionals need to be aware of and implement these protocols securely,
adhering to the guidelines provided by both OWASP and the respective specifications of OAuth2
and OIDC.

A basic OIDC and OAuth2 OWASP-compliant example

Setting up a fully OWASP-compliant OAuth 2.0 and OIDC implementation involves several considerations,
and the implementation can vary based on the identity provider and client application specifics.
However, I’ll provide a basic example using ASP.NET Core and IdentityServer4 as the identity provider:

1.	 Create a new ASP.NET Web Core project: Create a new ASP.NET Core Web API project in
Visual Studio or using the command line:

dotnet new webapi -n CH07_MyApi

Web API security with OWASP 221

2.	 Install the required NuGet packages: Install the necessary packages for OAuth 2.0 and OIDC:

dotnet add package IdentityServer4
dotnet add package IdentityServer4.AspNetIdentity
dotnet add package Microsoft.AspNetCore.Authentication.
OpenIdConnect

3.	 Configure IdentityServer4: Set up IdentityServer4 in your Startup class:

public void ConfigureServices(IServiceCollection services)
{
 // Other configurations...
 services.AddIdentityServer()
 .AddDeveloperSigningCredential()
 .AddInMemoryApiResources(Config.GetApiResources())
 .AddInMemoryClients(Config.GetClients())
 .AddAspNetIdentity<ApplicationUser>();
}

Now, configure the app so that it uses IdentityServer and authentication:
public void Configure(IApplicationBuilder app,
IHostingEnvironment env)
{
 // Other configurations...
 app.UseIdentityServer();
 app.UseAuthentication();
 // Other middleware...
}

Create a Config class to provide some in-memory configurations:
public static class Config
{
 public static IEnumerable<ApiResource> GetApiResources()
 {
 return new List<ApiResource>
 {
 new ApiResource(“CH07_MyApi”, “CH07: My API”)
 };
 }
 public static IEnumerable<Client> GetClients()
 {
 return new List<Client>
 {
 new Client
 {

Designing and Developing APIs222

 ClientId = “CH07_MyApiClient”,
 ClientSecrets = { new Secret(“CH07_MyApiSecret”.
Sha256()) },
 AllowedGrantTypes = GrantTypes.
ClientCredentials,
 AllowedScopes = { “CH07_MyApi” }
 }
 };
 }
}

4.	 Secure API endpoints: Protect your API endpoints by using the Authorize attribute in
your controller:

[Authorize]
[ApiController]
[Route(“api/[controller]”)]
public class MyController : ControllerBase
{
 [HttpGet]
 public IActionResult Get()
 {
 // Your secure API logic
 return Ok(new { message = “Secure data from the API” });
 }
}

5.	 Client application setup: Create a simple client application (for example, ASP.NET Core MVC)
to demonstrate the OIDC flow:

dotnet new mvc -n CH07_MyApiClient

In the client’s Startup.cs file, configure OIDC:
public void ConfigureServices(IServiceCollection services)
{
 // Other configurations...
 services.AddAuthentication(options =>
 {
 options.DefaultScheme = CookieAuthenticationDefaults.
AuthenticationScheme;
 options.DefaultChallengeScheme = “oidc”;
 })
 .AddCookie()
 .AddOpenIdConnect(“oidc”, options =>
 {

Summary 223

 options.Authority = “https://localhost:5001”;
 options.ClientId = “CH07_MyApiClient”;
 options.ClientSecret = “CH07_MyApiSecret”;
 options.ResponseType = “code”;
 options.SaveTokens = true;
 options.Scope.Add(“CH07_MyApi”);
 });
}

6.	 Secure MVC views: Protect your MVC views by requiring the user to log in:

[Authorize]
public class HomeController : Controller
{
 public IActionResult Index()
 {
 return View();
 }
}

7.	 Test the setup:

I.	 Run the IdentityServer4 project (https://localhost:5001).

II.	 Run the API project (https://localhost:5003).

III.	 Run the MVC client project (https://localhost:5002).

Visit https://localhost:5002 in your browser; you should be redirected to log in. After
logging in, you should see the secure data that was retrieved from the API.

This is a basic example, and you should further enhance it based on your specific requirements.
Additionally, always ensure that your implementation adheres to OWASP guidelines and best practices
for secure authentication and authorization.

Summary
An API is a set of rules and protocols that enables one software application to interact with another.
APIs facilitate communication between different software systems, allowing them to exchange data and
functionality. There are different types of APIs, including web APIs, library APIs, and operating system APIs.

API operations can be categorized as idempotent or non-idempotent. Idempotent operations can be
repeated multiple times without them changing the result, making them safer for retries in case of
failures. Non-idempotent operations, on the other hand, may yield different results with each execution.

APIs often use HTTP verbs to define the operation that should be performed. Common HTTP verbs
include GET (retrieve data), POST (create data), PUT (update data), and DELETE (remove data).

Designing and Developing APIs224

API design involves considering aspects such as endpoint structure, data format (typically JSON or
XML), error handling, versioning, and authentication. A well-designed API promotes ease of use,
scalability, and maintainability.

The API design process involves defining requirements, designing the interface, specifying endpoints,
documenting the API, and testing thoroughly. Iterative refinement is crucial to ensure the API meets
user needs.

Security is a critical aspect of API development. This includes secure communication using HTTPS,
authentication (API keys and OAuth), authorization, input validation, and protection against common
security threats such as injection attacks and XSS.

The choice between on-premises and cloud APIs depends on factors such as infrastructure requirements,
scalability, and accessibility. Cloud APIs offer the advantage of scalability and accessibility, while
on-premises APIs provide more control over infrastructure.

API development involves creating endpoints, handling data formats, implementing authentication
and authorization, and ensuring scalability and performance. Frameworks and tools are commonly
used for API development.

OWASP provides guidelines for securing web APIs. Common security considerations include proper
authentication, authorization, input validation, encryption, and protection against OWASP’s Top 10
security risks.

In conclusion, understanding and implementing best practices in API design, development, and
security are essential for creating robust and reliable software systems that can seamlessly communicate
and share data.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 How can you ensure security in a C# API, and what are some best practices for handling
authentication and authorization?

2.	 What is OWASP, and why is it significant in the field of web application security?

3.	 Explain the role of OIDC in the context of identity authentication. How does it differ from
OAuth 2.0?

4.	 What are the key roles in OAuth 2.0, and how do they interact in the authorization process?

Further reading 225

Further reading
Here are some resources for further reading on writing clean C# APIs with clean architecture:

•	 API in C#: The Best Practices of Design and Implementation: https://www.udemy.com/
course/api-in-csharp/: This course provides an in-depth explanation of how to design
and implement a type or an API that takes care of its users, encapsulates types, codes in a good
style, refactors the code, and throws and handles exceptions properly.

•	 Clean Architecture With .NET 6 - C# Corner: https://www.c-sharpcorner.com/
article/clean-architecture-with-net-62/: This article provides a brief on what
a clean architecture is and how to design a solution in .NET 6 while following this architecture.

•	 Clean Architecture Solution Template GitHub - ardalis/CleanArchitecture: https://github.
com/ardalis/CleanArchitecture: This GitHub repository provides a starting point
for Clean Architecture with ASP.NET Core.

•	 Introduction To Clean Architecture And Implementation With ASP.NET Core: https://www.
bytehide.com/blog/clean-architecture-csharp: This article provides an
introduction to clean architecture and its implementation with ASP.NET Core.

•	 Hands-On Design Patterns with C# and .NET Core | Packt: https://www.packtpub.com/
product/hands-on-design-patterns-with-c-and-net-core/9781789133646:
This book provides an overview of object-oriented programming (OOP) and SOLID principles.
It provides an in-depth explanation of the Gang of Four (GoF) design patterns, including
creational, structural, and behavioral.

•	 Software Architecture with C# 9 and .NET 5 - Second Edition: https://www.packtpub.
com/product/software-architecture-with-c-9-and-net-5-second-
edition/9781800566040: This book enables you to acquire the key skills, knowledge,
and best practices required to become an effective software architect.

•	 ASP.NET Core - SOLID and Clean Architecture (.NET 5 and Up): https://www.oreilly.
com/library/view/aspnet-core/9781803231228/: This book by Trevoir Williams
is set to release in February 2023.

•	 PacktPublishing/Clean-Architecture-with-.NET – GitHub: https://github.com/
PacktPublishing/Clean-Architecture-with-.NET: This GitHub repository
by Packt Publishing provides a starting point for Clean Architecture with .NET.

https://www.udemy.com/course/api-in-csharp/
https://www.udemy.com/course/api-in-csharp/
https://www.c-sharpcorner.com/article/clean-architecture-with-net-62/
https://www.c-sharpcorner.com/article/clean-architecture-with-net-62/
https://github.com/ardalis/CleanArchitecture
https://github.com/ardalis/CleanArchitecture
https://www.bytehide.com/blog/clean-architecture-csharp
https://www.bytehide.com/blog/clean-architecture-csharp
https://www.packtpub.com/product/hands-on-design-patterns-with-c-and-net-core/9781789133646
https://www.packtpub.com/product/hands-on-design-patterns-with-c-and-net-core/9781789133646
https://www.packtpub.com/product/software-architecture-with-c-9-and-net-5-second-edition/9781800566040
https://www.packtpub.com/product/software-architecture-with-c-9-and-net-5-second-edition/9781800566040
https://www.packtpub.com/product/software-architecture-with-c-9-and-net-5-second-edition/9781800566040
https://www.oreilly.com/library/view/aspnet-core/9781803231228/
https://www.oreilly.com/library/view/aspnet-core/9781803231228/
https://github.com/PacktPublishing/Clean-Architecture-with-.NET
https://github.com/PacktPublishing/Clean-Architecture-with-.NET

8
Addressing Cross-Cutting

Concerns

In modern software development, addressing cross-cutting concerns is essential for building robust and
maintainable applications. Cross-cutting concerns refer to aspects of a software system that cut across
multiple modules or components, often resulting in code duplication and scattered implementation.
These concerns include logging, error handling, security, caching, and more.

In this chapter, we will explore various techniques and strategies in C# for effectively addressing
cross-cutting concerns.

By the end of this chapter, you will have a solid understanding of the concepts, techniques, and best
practices required to address cross-cutting concerns in your C# projects effectively.

Note
This chapter has no source code and aims to be a general introduction to the many aspects of
cross-cutting concerns that you need to be aware of as a software developer and programmer.
In Chapter 9, we will be building a reusable cross-cutting concerns project with plenty of source
code, and we will be using the PostSharp aspect-oriented programming (AOP) framework
to build the project.

In this chapter, we will cover the following topics:

•	 A definition of cross-cutting concerns

•	 Importance and impact on software development

•	 Common examples of cross-cutting concerns

Addressing Cross-Cutting Concerns228

The learning outcomes of the chapter are:

•	 You will be able to define what cross-cutting concerns are, their importance, and their impact
on software development

•	 You will have seen examples of cross-cutting concerns and know how to address them

The next section will define what cross-cutting concerns are.

A definition of cross-cutting concerns
Cross-cutting concerns refer to aspects of a software system that cut across multiple modules or
components, affecting the behavior and functionality of the application as a whole. Unlike core
functional requirements (FRs), which are typically confined to specific modules or components, cross-
cutting concerns permeate multiple parts of the code base and have an impact on the overall system.

Here are some common cross-cutting concerns encountered in software development, along with
their descriptions:

•	 Logging: Logging applies to all layers. Logging involves capturing and recording relevant
information about the application’s runtime behavior, errors, and events. It helps in diagnosing
issues, tracking application flow, and providing insights into system behavior for troubleshooting
and analysis.

•	 Error handling and exception management: Error handling and exception management apply
to all layers. Error handling encompasses the process of gracefully managing and responding to
errors and exceptions that occur during application execution. It involves handling and recovering
from exceptions, logging error details, and presenting meaningful error messages to users.

•	 Security and authorization: Security and authorization primarily apply to the Presentation
Layer (input validation, authentication) and Data Access Layer (data integrity, authorization).
However, aspects of security can apply to all layers. Security concerns involve protecting the
application from unauthorized access, ensuring data confidentiality, and enforcing proper
user authentication and authorization mechanisms. This includes user authentication, access
control, data encryption, and secure communication protocols.

•	 Caching: Caching primarily applies to the Data Access Layer to cache data and improve
performance and to the Presentation Layer for caching user interface states. Caching is the
process of storing frequently accessed data in a temporary storage area to improve performance
and reduce the need for expensive operations. It involves caching results of computationally
intensive operations, database queries, or external API responses.

•	 Performance optimization: Performance optimization applies to all layers. Performance
optimization focuses on improving the speed, efficiency, and resource utilization of an application.
It includes techniques such as optimizing algorithms, reducing database queries, minimizing
network roundtrips, and using efficient data structures.

A definition of cross-cutting concerns 229

•	 Transaction management: Transaction management primarily applies to the Data Access Layer where
transactions are managed and in the Business Logic Layer’s transaction management. Transaction
management deals with maintaining data integrity and consistency when multiple operations need to
be executed as an atomic unit. It ensures that either all operations within a transaction are completed
successfully or none of them take effect, thereby preventing data inconsistencies.

•	 Cross-cutting validation: Cross-cutting validation applies to all layers. Cross-cutting validation
involves applying validation rules or constraints that are applicable across different parts of
the application. It includes input validation, data integrity checks, and enforcing business rules
consistently throughout the system.

•	 Auditing and compliance: Auditing and compliance apply to all layers. Auditing refers to the
tracking and recording of actions performed within the application, ensuring compliance with
regulations, policies, and industry standards. It involves capturing and storing information
about user actions, system changes, and access to sensitive data.

•	 Localization and internationalization: Localization and internationalization primarily apply
to the Presentation Layer where user-facing text is displayed, and potentially the Business Logic
Layer and Data Access Layer if they deal with locale-specific logic or data. Localization and
internationalization concerns involve adapting the application to support multiple languages,
cultural preferences, and regional formats. This includes providing translations, date and time
formatting, currency conversion, and support for different character encodings.

•	 Monitoring: Monitoring applies to all layers. The monitoring concern involves monitoring the
application’s performance, health, and usage patterns. It includes capturing metrics, tracking
resource utilization, identifying bottlenecks, and generating reports for analysis and optimization.

Figure 8.1: Cross-cutting concerns

These cross-cutting concerns require special attention as they transcend specific modules or components, and
their proper handling is essential for building reliable, maintainable, and high-performing software applications.

Addressing Cross-Cutting Concerns230

Importance and impact on software development
Addressing cross-cutting concerns is of paramount importance in software development due to their
significant impact on the overall quality, maintainability, and performance of the application. Here
are some key reasons why addressing cross-cutting concerns is crucial:

•	 Modularity and code organization: By addressing cross-cutting concerns, developers can
modularize and encapsulate these concerns separately from the core business logic. This
separation promotes better code organization, reduces code duplication, and improves the
maintainability and understandability of the code base.

•	 Maintainability and reusability: Properly addressing cross-cutting concerns leads to cleaner
and more maintainable code. It allows developers to make changes or enhancements to the
cross-cutting concern in one place, which automatically propagates those changes throughout
the application. This reduces the risk of introducing bugs and makes it easier to modify or
extend the application in the future.

•	 Separation of concerns (SoC): Addressing cross-cutting concerns enables a clear SoC between
the core functionality and the pervasive aspects of the system. This separation enhances code
readability, improves the overall design of the application, and makes it easier to reason about
and test individual components.

•	 Consistency and standardization: Cross-cutting concerns, when addressed uniformly, ensure
consistent implementation and behavior across the entire application. This consistency improves
the user experience, reduces the likelihood of errors, and establishes coding standards that
enhance collaboration among developers.

•	 Performance and efficiency: By addressing performance-related cross-cutting concerns, such
as caching or optimizing database queries, developers can significantly improve the speed and
efficiency of the application. This leads to better user experiences, reduced response times, and
optimized resource utilization.

•	 Debugging and troubleshooting: Properly handling cross-cutting concerns facilitates effective
debugging and troubleshooting. Separating these concerns from the core logic makes it easier
to isolate and identify issues, track application flow, and capture relevant information for
error diagnosis.

•	 Scalability and extensibility: Addressing cross-cutting concerns promotes scalability and
extensibility. When these concerns are modularized and encapsulated, it becomes easier to
introduce new features, adapt to changing requirements, and scale the application without
disrupting the core functionality.

•	 Compliance and security: Cross-cutting concerns such as security and compliance can have
legal, regulatory, and reputational implications for applications. Addressing these concerns
ensures that the application meets industry standards, protects sensitive data, and mitigates
security risks.

Common examples of cross-cutting concerns 231

Addressing cross-cutting concerns positively impacts software development by improving modularity,
maintainability, performance, and code organization. It enables developers to separate concerns, achieve
consistency, enhance debugging and troubleshooting, and build scalable and extensible applications.
By giving due attention to these pervasive aspects, developers can deliver high-quality, robust, and
reliable software systems.

Common examples of cross-cutting concerns
In this section, we will be looking at examples of cross-cutting concerns and how they can be handled.

Logging

Logging is a common example of a cross-cutting concern that cuts across multiple modules or
components in an application. It involves capturing and recording relevant information about the
application’s runtime behavior, errors, and events. Here are some common examples of logging that
would be addressed as cross-cutting concerns:

•	 Error logging: When an error occurs during application execution, it is crucial to log detailed
information about the error, including the stack trace, error message, and any relevant contextual
data. Error logging provides a valuable resource for troubleshooting and diagnosing issues.
It can be addressed as a cross-cutting concern by implementing a centralized error-handling
mechanism that captures and logs errors from different parts of the application.

•	 Informational logging: Informational logging involves capturing important events or milestones
during the execution of the application. This can include logging application startup, shutdown,
significant configuration changes, or specific user actions. By addressing informational logging
as a cross-cutting concern, developers can capture these events consistently across various
modules and components.

•	 Metrics: Metrics focuses on measuring and logging performance-related metrics, such as
response times, execution times of critical operations, or resource utilization. By implementing
metrics as a cross-cutting concern, developers can capture performance data from different
components and use it to identify bottlenecks, optimize code, and improve overall application
performance. Metric gathering is not usually done with standard logging libraries, but with
dedicated libraries such as app.metrics.

•	 Debug logging: Debug logging involves capturing additional information during the development
and testing phases to aid in debugging and troubleshooting. This can include logging variable
values, intermediate results, or specific code execution paths. By addressing debug logging as
a cross-cutting concern, developers can enable/disable debug logging globally or for specific
components, allowing for efficient debugging and reducing noise in production logs.

Addressing Cross-Cutting Concerns232

To handle logging as a cross-cutting concern, developers can leverage logging frameworks or libraries
available in C#, such as log4net, NLog, Serilog, or the built-in logging capabilities in .NET Core and
.NET Framework. These frameworks provide standardized logging APIs and features, including
configurable log levels, log formatting, log filtering, and support for various log destinations (for
example, console, file, database, or external services).

By implementing a centralized logging approach, developers can ensure consistent logging practices
throughout the application. This involves modularizing logging code, encapsulating it within dedicated
logging components, and utilizing appropriate logging levels and log message formats. Additionally,
developers can configure the logging framework to capture and store logs in a centralized location,
making it easier to analyze and monitor the application’s behavior.

Addressing logging as a cross-cutting concern improves the maintainability, troubleshooting, and
monitoring capabilities of the application. It enables developers to capture and analyze important
runtime information, aiding in diagnosing issues, identifying performance bottlenecks, and ensuring
reliable application behavior.

Error handling and exception management

Error handling and exception management are critical cross-cutting concerns that span multiple
modules or components in an application. They involve managing and responding to errors and
exceptions that occur during application execution. Here are some common examples of error handling
and exception management as cross-cutting concerns:

•	 Centralized exception handling: Implementing centralized exception handling allows for
consistent and uniform handling of exceptions throughout the application. This involves
capturing exceptions at a high level, logging relevant information about the exception, and
presenting meaningful error messages to users. By addressing exception handling as a cross-
cutting concern, developers can ensure that exceptions are handled consistently across different
modules, promoting maintainability and reducing code duplication.

•	 Error logging and reporting: When an error occurs, it is crucial to log detailed information
about the error for troubleshooting and analysis. This includes logging the exception stack
trace, error message, relevant contextual data, and any additional information that can assist
in diagnosing the issue. By addressing error logging and reporting as a cross-cutting concern,
developers can implement a standardized mechanism to capture and log errors from different
parts of the application, facilitating efficient debugging and problem resolution.

•	 Error recovery and graceful degradation: Cross-cutting error handling also involves implementing
strategies for error recovery and graceful degradation. This includes handling recoverable errors,
retrying failed operations, providing fallback mechanisms, and ensuring the application can
gracefully handle errors without crashing or negatively impacting the user experience. By addressing
error recovery and graceful degradation as cross-cutting concerns, developers can implement
consistent error-handling strategies that promote application resilience and user satisfaction.

Common examples of cross-cutting concerns 233

•	 Exception propagation and wrapping: Exception propagation and wrapping are cross-cutting
concerns that involve properly handling and propagating exceptions across different layers of the
application. This includes catching exceptions at appropriate levels, wrapping them in custom
exceptions if necessary, and propagating them to higher-level components or system boundaries. By
addressing exception propagation and wrapping as cross-cutting concerns, developers can ensure
that exceptions are appropriately handled, allowing for better SoC and improved code readability.

•	 User-friendly error messages: Providing meaningful and user-friendly error messages is an
important aspect of error handling. It involves crafting error messages that are informative,
clear, and actionable for users, helping them understand the cause of the error and guiding
them toward potential solutions. By addressing user-friendly error messages as a cross-cutting
concern, developers can standardize the process of generating and presenting error messages,
ensuring consistency and a positive user experience across the application.

To handle error handling and exception management as cross-cutting concerns, developers can follow
best practices such as:

•	 Implementing a centralized exception-handling mechanism, such as a global exception handler
or middleware, to capture and handle exceptions uniformly

•	 Logging exceptions and relevant contextual information using a logging framework or library

•	 Using structured exception types and custom exception classes to provide specific error
information and differentiate between different types of exceptions

•	 Implementing appropriate error recovery strategies, such as retry mechanisms or fallback
options, to handle recoverable errors gracefully

•	 Providing user-friendly error messages that communicate the problem clearly and suggest
possible actions for resolution

•	 Establishing error-handling policies and guidelines that are followed consistently throughout
the application development process

By addressing error handling and exception management as cross-cutting concerns, developers can
improve application robustness, maintainability, and user satisfaction by ensuring consistent and
effective handling of errors and exceptions across the entire application.

Security and authorization

Security and authorization are vital cross-cutting concerns in application development. They
encompass measures to protect the application from unauthorized access, ensure data confidentiality,
and enforce proper user authentication and authorization mechanisms. Here are some common
examples of security and authorization as cross-cutting concerns:

•	 User authentication: User authentication is a crucial aspect of security and authorization. It involves
verifying the identity of users accessing the application. Addressing user authentication as a cross-

Addressing Cross-Cutting Concerns234

cutting concern involves implementing a standardized authentication mechanism, such as username/
password authentication, token-based authentication (for example, JSON Web Token (JWT)), or
integration with external authentication providers (for example, Open Authorization (OAuth)).
This ensures consistent authentication across different modules or components of the application.

•	 Access control: Access control is another important aspect of security and authorization. It
involves determining which actions and resources a user is permitted to access based on their
roles, permissions, or privileges. Addressing access control as a cross-cutting concern involves
implementing a centralized authorization mechanism that enforces access control rules
consistently across the application. This can be achieved through role-based access control
(RBAC), attribute-based access control (ABAC), or other access control models.

•	 Data encryption: Data encryption is a critical security measure to protect sensitive data from
unauthorized access or interception. It involves encrypting data at rest (stored in databases
or files) and data in transit (communication over networks). Addressing data encryption as a
cross-cutting concern involves implementing encryption algorithms or utilizing encryption
libraries/frameworks to ensure that sensitive data is encrypted and decrypted consistently
across different parts of the application.

•	 Input validation: Input validation is a security concern that involves validating and sanitizing
user input to prevent security vulnerabilities such as SQL injection, cross-site scripting (XSS),
or command injection attacks. Addressing input validation as a cross-cutting concern involves
implementing a standardized input validation mechanism that validates user input consistently
across the application. This helps mitigate common security risks associated with malicious
or malformed input.

•	 Security auditing and logging: Security auditing and logging involve capturing and monitoring
security-related events, user actions, and system changes for compliance and troubleshooting
purposes. Addressing security auditing and logging as cross-cutting concerns involves
implementing a centralized logging mechanism that captures security-related events consistently
across different components. This allows for effective monitoring, analysis, and forensic
investigations in case of security incidents, and therefore security logs should be kept separate
from standard logs for security reasons.

•	 Secure communication: Secure communication ensures the confidentiality and integrity of
data exchanged between the application and external systems or clients. Addressing secure
communication as a cross-cutting concern involves utilizing secure communication protocols, such
as HTTPS/TLS, and implementing certificate management practices to encrypt and authenticate
communication channels. This ensures that sensitive information remains protected during transit.

•	 Security configuration management (SCM): SCM involves managing and securing configuration
settings, such as database connection strings, API keys, or access control policies. Addressing
SCM as a cross-cutting concern involves implementing secure storage mechanisms for sensitive
configuration settings, enforcing access control to configuration files, and following secure
coding practices to prevent configuration-related vulnerabilities.

Common examples of cross-cutting concerns 235

To handle security and authorization as cross-cutting concerns, developers can follow best practices
such as:

•	 Adopting established security frameworks and libraries that provide robust authentication and
authorization mechanisms

•	 Implementing secure coding practices, including input validation, output encoding, and
protection against common security vulnerabilities

•	 Regularly updating and patching software components and libraries to address
security vulnerabilities

•	 Conducting security testing, including penetration testing and code reviews, to identify and
address security weaknesses

•	 Establishing secure development guidelines and providing training to developers to ensure
security considerations are integrated into the development process

By addressing security and authorization as cross-cutting concerns, developers can ensure that
security measures are consistently applied throughout the application. This helps protect sensitive
data, prevent unauthorized access, and maintain the integrity and confidentiality of the application
and its users. It also helps in compliance with regulatory requirements and builds trust with users
by demonstrating a commitment to safeguarding their information.

By implementing security and authorization as cross-cutting concerns, developers can achieve the
following benefits:

•	 Consistency: Addressing security and authorization consistently across the application ensures
that security measures are applied uniformly, reducing the risk of overlooking vulnerabilities
or creating inconsistencies that could be exploited by attackers.

•	 Modularity: Treating security and authorization as cross-cutting concerns allows for
modularization and encapsulation of security-related logic. This promotes code reusability,
maintainability, and SoC, making it easier to enforce security policies and make changes or
updates when needed.

•	 Reduced duplication: Handling security and authorization as cross-cutting concerns avoids
duplicating security-related code across different modules or components. Instead, developers
can centralize security logic, reducing redundancy and simplifying maintenance efforts.

•	 Scalability: When security and authorization are addressed as cross-cutting concerns, they can
be scaled and applied consistently as the application grows. This ensures that security measures
can adapt to evolving requirements and accommodate increased user access and data volumes.

•	 Auditability: Centralizing security-related logging and auditing enables comprehensive monitoring
and analysis of security events. It facilitates compliance audits, forensic investigations, and the
detection of potential security breaches or suspicious activities.

Addressing Cross-Cutting Concerns236

•	 Interoperability: By addressing security and authorization as cross-cutting concerns, developers
can integrate with external authentication providers, identity management systems, or security
frameworks more easily. This enables seamless interoperability with other systems or services,
ensuring a cohesive and secure application ecosystem.

Addressing security and authorization as cross-cutting concerns is crucial for developing robust and
secure applications. It helps protect sensitive data, mitigate security risks, and maintain user trust. By
implementing standardized security practices and consistently applying them across the application,
developers can create a secure foundation that underpins the entire software development life
cycle (SDLC).

Caching

Caching is a common cross-cutting concern in software development that involves storing frequently
accessed or computationally expensive data in a temporary storage location for faster retrieval. It helps
improve application performance, reduce latency, and minimize resource consumption. Here are some
common examples of caching that would be addressed as cross-cutting concerns:

•	 Data caching: Data caching involves caching frequently accessed data from data sources such
as databases, external APIs, or filesystems. This can include caching the results of database
queries, the responses from API calls, or the contents of files. By addressing data caching
as a cross-cutting concern, developers can implement a caching layer that sits between the
application and the data source, allowing for efficient retrieval of data without the need to
access the original source repeatedly.

•	 Query result caching: Query result caching focuses on caching the results of computationally
expensive or frequently executed queries. This can be particularly beneficial in scenarios where
the same query is executed multiple times with the same parameters. By addressing query result
caching as a cross-cutting concern, developers can cache the results of queries in memory or
a distributed cache, reducing the time and resources required for query execution.

•	 HTTP response caching: HTTP response caching involves caching the responses of HTTP
requests to avoid redundant network traffic and improve response times. This is especially
useful for static or semi-static content that does not frequently change. By addressing HTTP
response caching as a cross-cutting concern, developers can configure caching headers and
mechanisms to cache responses at various levels, such as the client-side cache, proxy servers,
or the application server itself.

•	 View or fragment caching: View or fragment caching focuses on caching parts or sections of a
user interface that are expensive to generate or compute. This can include caching the rendered
output of a view, a component, or a portion of a web page. By addressing view or fragment
caching as a cross-cutting concern, developers can cache the pre-rendered output and serve it
directly without the need for costly computations, enhancing the application’s responsiveness.

Common examples of cross-cutting concerns 237

•	 Object caching: Object caching involves caching instances of objects or complex data structures
to improve performance. This can be helpful when the creation or retrieval of objects is time-
consuming or resource-intensive. By addressing object caching as a cross-cutting concern,
developers can cache objects in memory or a distributed cache, enabling faster access and
reducing the need for expensive object creation or retrieval operations.

To handle caching as a cross-cutting concern, developers can adopt various strategies:

•	 Utilizing caching frameworks or libraries: Use existing caching frameworks or libraries, such
as Redis, Memcached, or the built-in caching mechanisms provided by web frameworks such
as ASP.NET Core or ASP.NET MVC. These frameworks provide APIs and configurations for
implementing caching strategies easily.

•	 Setting caching policies: Define caching policies that determine when and for how long data
should be cached. This includes considering factors such as data volatility, expiration times,
cache invalidation mechanisms, and cache eviction strategies.

•	 Applying cache dependencies: Establish dependencies between cached items and the underlying
data sources to ensure the cache remains synchronized with the data. Invalidate or update the
cache when the underlying data changes to maintain data consistency.

•	 Employing cache management techniques: Implement techniques such as cache partitioning, cache
compression, or cache throttling to optimize cache usage and manage cache resources efficiently.

•	 Measuring and monitoring cache performance: Use monitoring tools and techniques to track
cache hit rates, cache misses, and cache effectiveness. This allows for performance optimization
and identifying potential cache-related issues.

By addressing caching as a cross-cutting concern, developers can enhance the performance and
scalability of applications, reduce the load on data sources, and improve overall user experience by
minimizing response times and resource consumption.

Performance optimization

Performance optimization is a crucial cross-cutting concern in software development that focuses on
improving the speed, efficiency, and resource utilization of an application. It involves identifying and addressing
bottlenecks, reducing unnecessary computations, and optimizing algorithms and data structures. Here are
some common examples of performance optimization that would be addressed as cross-cutting concerns:

•	 Algorithmic optimization: Algorithmic optimization involves improving the efficiency of
algorithms and data structures used in the application. This includes analyzing the complexity
of algorithms, identifying opportunities for algorithmic improvements (such as replacing a
linear search with a binary search), and selecting the most appropriate data structures for
efficient data manipulation (for example, using a hash table instead of a linear list). Addressing
algorithmic optimization as a cross-cutting concern helps ensure that efficient algorithms and
data structures are used consistently throughout the application.

Addressing Cross-Cutting Concerns238

•	 Caching: Caching, as discussed earlier, is a performance optimization technique that involves
storing frequently accessed or computationally expensive data in temporary storage. By caching
data or computation results, developers can reduce the need to recalculate or retrieve the same
data repeatedly, improving application response times and reducing resource usage. Addressing
caching as a cross-cutting concern involves implementing a caching layer that can be utilized
across different modules or components of the application.

•	 Lazy loading: Lazy loading is a technique that defers the loading of resources or data until they
are needed. This helps reduce the initial load time and resource consumption, especially for large
or complex applications. By addressing lazy loading as a cross-cutting concern, developers can
implement mechanisms to load resources or data on demand, ensuring that only the necessary
components are loaded when required.

•	 Database optimization: Database optimization focuses on improving the performance of
database operations. This includes optimizing database queries by using appropriate indexes,
reducing unnecessary database roundtrips, and optimizing database schema design. Addressing
database optimization as a cross-cutting concern involves utilizing best practices and techniques
to optimize database access and reduce the overhead of database operations across the application.

•	 Multithreading and asynchronous processing: Multithreading and asynchronous processing
techniques are used to leverage parallelism and maximize the utilization of system resources.
By performing computationally intensive or long-running tasks in separate threads or
asynchronously, the application can maintain responsiveness and improve overall throughput.
Addressing multithreading and asynchronous processing as cross-cutting concerns involves
implementing concurrency patterns, utilizing thread pools, or employing asynchronous
programming techniques consistently throughout the application.

•	 Resource management: Efficient resource management is essential for optimal application
performance. This involves properly managing resources such as memory, file handles, network
connections, and database connections. Addressing resource management as a cross-cutting
concern includes employing techniques such as object pooling, connection pooling, and proper
disposal of resources to minimize resource leaks and maximize resource reuse.

•	 Code profiling and performance monitoring: Code profiling and performance monitoring
are important practices for identifying performance bottlenecks and areas of improvement.
This includes using profiling tools to analyze the performance characteristics of the application,
identifying hotspots in the code, and measuring the impact of optimization efforts. Addressing
code profiling and performance monitoring as cross-cutting concerns involves incorporating
performance analysis and monitoring techniques into the development and testing processes.

To handle performance optimization as a cross-cutting concern, developers can follow these approaches:

•	 Conducting performance testing and analysis to identify bottlenecks and areas for improvement

•	 Utilizing profiling tools and techniques to measure and analyze the performance characteristics
of the application

Common examples of cross-cutting concerns 239

•	 Applying optimization strategies at various levels, such as algorithmic optimizations, database
optimizations, or resource management optimizations

•	 Utilizing performance counters, logging, and monitoring tools to gather real-time performance
metrics and identify performance issues in production environments

•	 Regularly reviewing and optimizing critical code paths, frequently accessed modules, and
performance-sensitive operations

•	 Applying performance optimization techniques consistently across the application, considering
the impact on code readability and maintainability

•	 Utilizing caching mechanisms appropriately to reduce redundant computations and improve
data retrieval performance

•	 Considering scalability and future growth when optimizing performance to ensure that the
application can handle increasing workloads and user demands

•	 Collaborating with the operations team or infrastructure specialists to optimize server
configurations, network settings, and other infrastructure-related factors that impact performance

•	 Keeping up to date with advancements in technology, frameworks, and libraries that offer
performance improvements and incorporating them into the application where applicable

By addressing performance optimization as a cross-cutting concern, developers can significantly
enhance the speed, responsiveness, and efficiency of their applications. Optimized performance not
only improves user experience but also reduces infrastructure costs, increases application scalability,
and allows the application to handle larger workloads effectively.

Transaction management

Transaction management is a vital cross-cutting concern in software development that ensures data
integrity and consistency when executing multiple operations as part of a single logical unit of work.
It involves coordinating and managing transactions across different components or modules of an
application. Here are some common examples of transaction management that would be addressed
as cross-cutting concerns:

•	 Database transactions: Database transactions are used to maintain data consistency and
integrity when performing multiple database operations. This includes inserting, updating,
or deleting records within a database. Addressing database transactions as a cross-cutting
concern involves utilizing the transaction management capabilities provided by the database
system or using transaction management frameworks available in the programming language
or framework being used. This ensures that all database operations within a transaction are
executed atomically (all-or-nothing) and that changes are persisted reliably.

Addressing Cross-Cutting Concerns240

•	 Distributed transactions: Distributed transactions involve coordinating and managing
transactions that span across multiple independent systems or services. In a distributed
environment, where data and operations are distributed across different resources or microservices,
ensuring transactional consistency becomes challenging. Addressing distributed transactions
as a cross-cutting concern involves employing distributed transaction management protocols
or frameworks that provide mechanisms for coordinating and synchronizing the participants
involved in the transaction. This ensures that all operations across the distributed systems either
commit or roll back together to maintain data integrity.

•	 Application-level transactions: Application-level transactions involve managing logical units
of work that span beyond the boundaries of a single database. This includes coordinating
operations across multiple components or services within an application. Addressing application-
level transactions as a cross-cutting concern requires implementing transaction management
mechanisms within the application. This can be achieved through programming language
constructs, transaction management frameworks, or custom transaction management logic.
It ensures that related operations are executed atomically and consistently across different
modules or components.

•	 Resource management: Resource management in transaction management involves ensuring that
resources used during a transaction, such as file handles, network connections, or external services,
are properly acquired, utilized, and released. This includes managing resource locks, connection
pooling, and handling resource failures. Addressing resource management as a cross-cutting
concern involves implementing appropriate resource management patterns, using connection
pooling techniques, and handling exceptions or failures that may occur during resource usage.

•	 Transaction monitoring and logging: Transaction monitoring and logging involve capturing
relevant information and events related to transactions for monitoring, auditing, and troubleshooting
purposes. This includes logging transaction details, tracking transaction status, and recording
any exceptions or errors that occur during the transaction. Addressing transaction monitoring
and logging as a cross-cutting concern involves implementing a centralized logging mechanism
that captures transaction-related events consistently across different components or services.
This facilitates monitoring, analysis, and debugging of transactional behavior.

To handle transaction management as a cross-cutting concern, developers can follow these practices:

•	 Utilize transaction management frameworks or libraries provided by the programming
language or framework being used. These frameworks abstract the complexities of transaction
coordination and provide mechanisms for managing transactions easily.

•	 Design and structure the application in a way that promotes modularization and SoC. This
helps isolate transactional logic from business logic, making it easier to manage and coordinate
transactions across different components.

•	 Ensure that transactions are properly defined and scoped to encapsulate related operations that
need to be treated as a single unit of work. This helps maintain data consistency and integrity.

Common examples of cross-cutting concerns 241

•	 Handle transaction failures and exceptions appropriately by implementing mechanisms for
rollback, retry, or compensation. This ensures that the application can recover from transactional
errors and maintain data consistency.

•	 Implement proper transaction isolation levels to balance the requirements of data consistency,
concurrency, and performance.

•	 Monitor and log transaction-related events to facilitate troubleshooting, auditing, and
performance analysis.

By addressing transaction management as a cross-cutting concern, developers can ensure data
integrity, consistency, and reliability when performing complex operations that involve multiple
resources or services.

Validation

Validation is a critical cross-cutting concern in software development that involves ensuring the correctness,
integrity, and compliance of data entered or processed by an application. It encompasses various forms
of data validation, including input validation, business rule validation, and data format validation.
Here are some common examples of validation that would be addressed as cross-cutting concerns:

•	 Input validation: Input validation focuses on validating user input to ensure it meets the required
format, length, and constraints. This includes checking for the presence of mandatory fields,
validating data types, and performing range or pattern checks. Addressing input validation as a
cross-cutting concern involves implementing validation logic at a centralized level that can be
applied consistently across different parts of the application. This can be achieved through the
use of validation frameworks or libraries that provide validation rules, annotations, or attributes.

•	 Business rule validation: Business rule validation ensures that data adheres to the specific
rules and constraints defined by the business logic of an application. This can involve complex
validations, such as verifying that certain fields are in a valid state, performing calculations or
cross-field validations, or checking for data dependencies. Addressing business rule validation
as a cross-cutting concern involves implementing a centralized validation layer or service that
can evaluate and enforce business rules consistently across different modules or components
of the application.

•	 Data format validation: Data format validation ensures that data is in the correct format or
follows specific formatting rules. This can include validating email addresses, phone numbers,
postal codes, URLs, or any other data format specific to the application’s domain. Addressing
data format validation as a cross-cutting concern involves utilizing regular expressions, parsing
libraries, or dedicated formatting/validation libraries to validate and enforce the desired data
formats consistently throughout the application.

Addressing Cross-Cutting Concerns242

•	 Domain-specific validation: Domain-specific validation refers to validations that are specific to
the application’s domain or industry requirements. This can involve compliance checks, regulatory
validations, or domain-specific constraints. Addressing domain-specific validation as a cross-
cutting concern involves understanding and implementing the specific validation requirements
applicable to the application’s domain. This may involve integrating with external validation
services, utilizing domain-specific validation libraries, or implementing custom validation logic.

To handle validation as a cross-cutting concern, developers can follow these practices:

•	 Utilize validation frameworks or libraries that provide pre-built validation rules, validators,
or annotations. These frameworks simplify the implementation of validation logic and
promote consistency.

•	 Implement validation logic at a centralized level to enforce validation rules consistently across
different parts of the application. This ensures that validations are not duplicated and that
changes or updates to validation rules can be applied universally.

•	 Leverage declarative validation approaches, such as annotations or attributes, to associate
validation rules directly with the data models or objects being validated. This promotes code
readability and reduces the coupling between validation logic and business logic.

•	 Implement custom validation logic, when necessary, especially for complex business rules or
domain-specific validations. This can be achieved through custom validation classes, functions,
or extensions that encapsulate specific validation requirements.

•	 Provide meaningful and user-friendly validation error messages that communicate validation
failures clearly to users, helping them understand and correct their input.

•	 Regularly review and update validation rules to accommodate changes in business requirements,
regulatory compliance, or data format standards.

By addressing validation as a cross-cutting concern, developers can ensure data integrity, improve
application robustness, and enhance the overall user experience by providing accurate and valid data
inputs. Centralizing and standardizing validation logic across the application leads to code reusability,
maintainability, and a consistent approach to data validation.

Auditing and compliance

Auditing and compliance are crucial cross-cutting concerns in software development that focus on
tracking and ensuring adherence to security policies, regulations, and internal guidelines. These
concerns involve capturing and logging relevant events, monitoring user activities, and enforcing
compliance with specific requirements. Here are some common examples of auditing and compliance
that would be addressed as cross-cutting concerns:

•	 Audit logging: Audit logging involves capturing and recording relevant events and activities
within an application for later review and analysis. This includes logging actions such as user
logins, data modifications, access attempts, and system changes. Addressing audit logging as a

Common examples of cross-cutting concerns 243

cross-cutting concern involves implementing a centralized logging mechanism that captures
audit events consistently across different components or modules of the application. This helps in
maintaining an audit trail, facilitating compliance, and aiding in security incident investigation.

•	 Access control: Access control ensures that only authorized users have appropriate access to
resources or functionalities within the application. This includes enforcing user authentication,
RBAC, and permissions management. Addressing access control as a cross-cutting concern
involves implementing a centralized access control mechanism that can be applied consistently
across different parts of the application. This can be achieved through the use of access control
frameworks or libraries that provide the necessary features and capabilities.

•	 Compliance with security standards: Compliance with security standards involves adhering
to specific security requirements, regulations, or industry best practices. This can include
compliance with standards such as the Payment Card Industry Data Security Standard (PCI
DSS), the Health Insurance Portability and Accountability Act (HIPAA), or the General
Data Protection Regulation (GDPR). Addressing compliance with security standards as a
cross-cutting concern involves implementing security controls, encryption mechanisms, data
protection measures, and privacy safeguards. It may also involve conducting security assessments,
vulnerability scans, or penetration testing to ensure compliance.

•	 Data privacy and protection: Data privacy and protection involve safeguarding sensitive or
personally identifiable information (PII) collected or processed by the application. This includes
encrypting data at rest and in transit, implementing secure communication protocols, and
enforcing data anonymization or pseudonymization where required. Addressing data privacy
and protection as a cross-cutting concern involves implementing data protection measures
consistently throughout the application, incorporating security frameworks or libraries, and
following privacy guidelines and regulations.

•	 Compliance auditing and reporting: Compliance auditing and reporting involve generating reports
or providing evidence of compliance with specific regulations or internal policies. This includes
generating compliance reports, tracking user activities, and ensuring proper documentation of
security controls and procedures. Addressing compliance auditing and reporting as a cross-cutting
concern involves implementing mechanisms to capture relevant data and events, generating
compliance reports, and providing audit trails and documentation when required.

•	 Incident response (IR) and forensics: IR and forensics involve handling security incidents,
investigating breaches, and performing forensic analysis. This includes capturing and preserving
relevant data, identifying the root cause of security incidents, and implementing remediation
measures. Addressing IR and forensics as a cross-cutting concern involves implementing
mechanisms to detect and respond to security incidents, incorporating security IR (SIR)
frameworks, and ensuring proper logging and retention of relevant data.

Addressing Cross-Cutting Concerns244

To handle auditing and compliance as cross-cutting concerns, developers can follow these practices:

•	 Implement a centralized logging and auditing mechanism that captures relevant events
consistently across the application

•	 Utilize security frameworks, libraries, or APIs that provide built-in functionality for access
control, authentication, and encryption

•	 Regularly review and update security policies, ensuring they align with applicable regulations
and industry best practices

•	 Conduct security assessments, vulnerability scans, or penetration testing to identify potential
security risks and vulnerabilities

•	 Monitor and analyze audit logs to detect any suspicious or unauthorized activities

•	 Implement mechanisms for generating compliance reports and providing evidence of adherence
to regulations or internal policies

•	 Establish IR and forensics procedures to promptly handle security incidents, investigate breaches,
and take necessary remedial actions

•	 Regularly train and educate developers, administrators, and users on security best practices,
compliance requirements, and the importance of adhering to security policies

•	 Conduct periodic security audits and assessments to evaluate the effectiveness of security
controls, identify areas for improvement, and ensure ongoing compliance with regulations

•	 Maintain documentation of security measures, policies, procedures, and compliance efforts to
demonstrate accountability and facilitate audits or regulatory inspections

By addressing auditing and compliance as cross-cutting concerns, developers can ensure that their applications
meet security standards, adhere to regulations, and protect sensitive data. Implementing consistent security
controls, monitoring user activities, and maintaining compliance with applicable regulations contribute to
the overall security posture of the application and instill trust among users and stakeholders.

Localization and internationalization

Localization and internationalization are important cross-cutting concerns in software development
that deal with making applications accessible and adaptable to different languages, cultures, and regions.
These concerns involve enabling the localization of user interfaces, handling date and time formats,
managing multilingual content, and accommodating cultural preferences. Here are some common
examples of localization and internationalization that would be addressed as cross-cutting concerns:

•	 User interface localization: User interface localization involves adapting the application’s
user interface elements, such as labels, buttons, menus, and messages, to different languages
and locales. This includes providing translations for user-facing text and ensuring proper
rendering and layout for different character sets and writing systems. Addressing user interface

Common examples of cross-cutting concerns 245

localization as a cross-cutting concern involves designing the application with localization in
mind, externalizing user interface strings, and utilizing localization frameworks or libraries
that support resource files or key-value pairs for different languages.

•	 Date and time formats: Date and time formats vary across different regions and cultures.
Addressing date and time formats as a cross-cutting concern involves correctly formatting and
displaying dates, times, and time zones according to the user’s locale and preferences. This can
be achieved by utilizing localization libraries or functions that provide built-in date and time
formatting capabilities or by leveraging platform-specific localization APIs.

•	 Currency and number formats: Currency and number formats also vary across different
regions and locales. Addressing currency and number formats as a cross-cutting concern
involves formatting and displaying currency values, decimal separators, and digit grouping
based on the user’s locale. This can be achieved by utilizing localization libraries or functions
that support currency and number formatting rules specific to different cultures.

•	 Multilingual content management: Managing and displaying multilingual content, such as
articles, product descriptions, or error messages, is an essential aspect of localization. Addressing
multilingual content management as a cross-cutting concern involves designing a content
management system (CMS) or utilizing localization tools that allow for the efficient translation
and management of content in different languages. This includes supporting workflows for
content translation, integrating with translation services or teams, and providing mechanisms
for content versioning and synchronization across languages.

•	 Cultural considerations: Cultural considerations encompass various aspects, such as language
directionality (for example, left-to-right or right-to-left), address formats, name formats, and
cultural preferences. Addressing cultural considerations as a cross-cutting concern involves
accommodating cultural differences in the application’s design and behavior. This may include
utilizing internationalization libraries or functions that handle language directionality, allowing
for customizable address formats, and providing options for personal name formats based on
different cultural conventions.

•	 Time zone handling: Time zone handling is crucial for applications serving users across
different regions. Addressing time zone handling as a cross-cutting concern involves correctly
capturing, storing, and displaying date and time values relative to the user’s time zone. This
includes utilizing time zone databases, converting time values between time zones, and providing
mechanisms for users to set their preferred time zone.

To handle localization and internationalization as cross-cutting concerns, developers can follow
these practices:

•	 Design the application with localization in mind from the beginning, considering factors such
as text expansion, layout flexibility, and language support.

•	 Externalize user-facing strings and utilize resource files or key-value pairs to store localized
text. This allows for easy translation and adaptation to different languages.

Addressing Cross-Cutting Concerns246

•	 Utilize localization frameworks or libraries that provide built-in functionality for user interface
localization, date and time formatting, and number and currency formatting.

•	 Support customizable language and locale settings for users to choose their preferred language
and cultural preferences.

•	 Collaborate with localization teams or services to ensure accurate and contextually appropriate
translations of user interface text and content.

•	 Test the application with different language settings, regions, and locales to identify and address
any localization-related issues.

•	 Keep language and locale-specific content separate from the application’s logic and functionality,
allowing for easier updates and additions of new translations.

•	 Provide mechanisms for users to switch languages or locales within the application, allowing
them to seamlessly navigate between different language versions.

•	 Consider cultural considerations when designing features or interactions, such as accommodating
different name formats or addressing cultural sensitivities.

•	 Stay up to date with language and cultural conventions, as they may evolve over time.
Regularly update language packs, localization resources, and translation files to reflect changes
and improvements.

•	 Consider the use of machine translation technologies or services to streamline the translation
process and support faster localization updates.

•	 Document localization processes and guidelines to ensure consistency and facilitate future
updates or maintenance.

By addressing localization and internationalization as cross-cutting concerns, developers can create
applications that cater to a global audience, providing a localized and culturally relevant user experience.
Implementing robust localization practices and utilizing appropriate tools and frameworks simplifies
the process of adapting the application to different languages, regions, and cultural requirements,
ultimately increasing the accessibility and usability of the application for users around the world.

Logging and monitoring

Logging and monitoring are essential cross-cutting concerns in software development that involve capturing
and analyzing application events, errors, and performance metrics. These concerns encompass logging
relevant information, detecting anomalies, and ensuring the stability and reliability of the application.

To handle logging and monitoring as cross-cutting concerns, developers can follow these practices:

•	 Utilize logging frameworks or libraries that provide flexible and configurable logging capabilities.
These frameworks often offer log levels, log formatting options, and various logging targets.

Summary 247

•	 Implement centralized logging mechanisms that can capture and store log entries consistently
across different components or modules of the application.

•	 Define and follow logging conventions and best practices to ensure consistent and meaningful
log messages across the application. This includes capturing relevant contextual information,
timestamps, and appropriate log levels for different types of events.

•	 Implement structured exception handling to capture and log detailed error information when
exceptions occur. Use exception-handling frameworks or custom error handlers to centralize
error logging and reporting.

•	 Set up performance monitoring tools or instrumentation to collect performance metrics and
track application performance. Analyze the collected data to identify performance bottlenecks
and optimize resource usage.

•	 Integrate security monitoring tools or services to detect and respond to security-related events
or anomalies. Implement log analysis and correlation techniques to identify potential security
breaches or suspicious activities.

•	 Utilize infrastructure monitoring tools or services to monitor the health, availability, and
performance of the application’s underlying infrastructure components. Set up alerts or
notifications to proactively address issues and ensure optimal system performance.

•	 Implement log analysis and reporting mechanisms to extract meaningful insights from the
collected log data. Utilize log analysis tools or log management platforms to search, filter, and
generate reports based on specific criteria or patterns.

•	 Regularly review and analyze log data to identify recurring issues, spot anomalies, and improve
the application’s stability, performance, and security.

•	 Ensure proper log retention and archival practices based on compliance or regulatory requirements.

By addressing logging and monitoring as cross-cutting concerns, developers can gain valuable insights
into their application’s behavior, diagnose issues more effectively, and proactively respond to security
incidents or performance bottlenecks. Logging and monitoring play a crucial role in maintaining the
reliability, security, and performance of the application throughout its life cycle.

Summary
Throughout this chapter, we have explored the definition and importance of cross-cutting concerns
in software development. These concerns are FRs that affect multiple parts of an application and can
have a significant impact on its overall design and quality.

We have examined various common examples of cross-cutting concerns, including logging, error
handling and exception management, security and authorization, caching, performance optimization,
transaction management, validation, localization and internationalization, and monitoring. These
concerns often require repetitive code or modifications throughout the application, making them
challenging to manage and maintain.

Addressing Cross-Cutting Concerns248

By properly handling cross-cutting concerns, developers can improve code maintainability, enhance
system performance, increase security, and facilitate internationalization and localization efforts.
Identifying and addressing these concerns early in the development process is crucial for building
high-quality and maintainable applications.

In summary, cross-cutting concerns are integral to software development, and effectively managing
them is essential for developing robust and efficient applications. Using AOP techniques, developers
can successfully address these concerns, resulting in modular and maintainable software systems

We will take a deeper look at AOP with code examples in Chapter 9, as we cover the PostSharp framework.

As we bring this chapter to a close, let’s summarize what we have learned about addressing
cross-cutting concerns.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 Define cross-cutting concerns.

2.	 Why are cross-cutting concerns important?

3.	 How do cross-cutting concerns impact software development?

4.	 List some examples of cross-cutting concerns.

Further reading
Here are some recommended resources for further reading on C# cross-cutting concerns and AOP:

•	 Aspect-Oriented Programming in .NET by Matthew D. Groves: This book provides a good
introduction to AOP and how it can be applied in .NET applications.

•	 AOP in .NET: Practical Aspect-Oriented Programming by Matthew D. Groves: Another resource
by Matthew Groves, this book focuses specifically on applying AOP in .NET, which is a common
approach to managing cross-cutting concerns.

•	 Dependency Injection in .NET by Mark Seemann: While not specifically focused on cross-cutting
concerns, this book covers the principles of dependency injection (DI), which is a technique
commonly used to address cross-cutting concerns in a modular way.

•	 Pro .NET Benchmarking: The Art of Performance Measurement by Andrey Akinshin: Performance
is a cross-cutting concern that often needs attention. This book can help you understand how
to measure and improve the performance of your C# applications.

•	 Pluralsight courses: Pluralsight offers various courses on C# and .NET development. Courses
such as Applied Asynchronous Programming with Patterns in C# or Building Scalable APIs with
GraphQL and Relay in C# may touch upon cross-cutting concerns.

Further reading 249

•	 Official Microsoft documentation: The official Microsoft documentation is always a valuable
resource. Check the documentation for specific frameworks and libraries you are using, such
as ASP.NET Core, for guidance on handling cross-cutting concerns.

•	 Articles and blogs: Explore blogs and articles from the C# and .NET community. Websites such
as Medium, Dev.to, and personal blogs of experienced developers often contain insightful
articles on various aspects of C# development, including dealing with cross-cutting concerns.

•	 GitHub repositories: Look for open source projects on GitHub that address cross-cutting
concerns. Studying the code of well-designed projects can provide practical insights into how
to handle these concerns effectively.

These resources should provide you with a solid foundation and practical insights into C# cross-
cutting concerns and AOP.

http://Dev.to

9
AOP with PostSharp

Aspect-oriented programming (AOP) can be used with object-oriented programming (OOP). An
aspect is an attribute applied to classes, methods, parameters, and properties that, at compile time,
weaves code into the class, method, parameter, or property to which it is applied. This approach allows
the cross-cutting concerns of a program to be moved from the business source code to a class library.
Concerns are added where needed as attributes. The compiler then weaves the required code in at
runtime. This keeps your business code small and readable. In this chapter, we will be using PostSharp.

We will be covering the following topics:

•	 How AOP works with PostSharp

•	 Extending the aspect framework

•	 Project – Cross-cutting concerns reusable library

•	 PostSharp and build pipeline considerations

•	 Dynamic AOP with Castle.DynamicProxy

By the end of the chapter, you will understand the following:

•	 How to use PostSharp in Visual Studio

•	 How to create your own reusable library that utilizes the PostSharp AOP framework

Let’s review the technical requirements for following along with this chapter.

Technical requirements
You will need the following tools installed to follow along with this tutorial:

•	 Visual Studio Community Edition

•	 PostSharp (essentials): https://www.postsharp.net/

https://www.postsharp.net/

AOP with PostSharp252

•	 PostSharp documentation: https://doc.postsharp.net/?pk_
vid=919254c8a0a73ae51691117837edbc2f

•	 The book’s source code: https://github.com/PacktPublishing/Clean-Code-
with-CSharp-Second-Edition/tree/main/CH09/CH09_AopWithPostSharp

AOP
AOP is a programming paradigm that aims to modularize and manage cross-cutting concerns in
software systems. In traditional programming approaches, cross-cutting concerns, such as logging,
security, transaction management, and error handling, tend to be scattered across different modules or
components, leading to code duplication and tangled dependencies. AOP provides a way to encapsulate
and centralize these concerns, making the code more modular, maintainable, and easier to understand.

At its core, AOP introduces a new construct called an “aspect.” An aspect represents a modular unit
of cross-cutting functionality that can be applied to multiple parts of a system. It allows developers
to separate concerns related to the core functionality of the system from cross-cutting concerns. This
separation enhances code modularity and improves the system’s overall structure.

AOP achieves this separation by introducing the concept of “join points” and “pointcuts.” A join point
represents a specific point in the execution of a program, such as method invocations, object creations,
or exception handling. A pointcut is a declarative expression that specifies which join points should
be intercepted by an aspect. By defining pointcuts, developers can specify locations in the code where
the cross-cutting concerns need to be applied.

Once pointcuts are defined, AOP frameworks provide mechanisms to intercept the execution at
those join points and execute the corresponding aspect code. The aspect code, often referred to as
“advice,” contains the behavior associated with the cross-cutting concern. This advice can be executed
before, after, or around the join points, allowing developers to inject additional functionality without
modifying core business logic.

AOP also introduces the concept of “weaving.” Weaving is the process of applying aspects to the target code
base, either statically or dynamically. In static weaving, an aspect is woven into the code base during the
compilation phase, resulting in modified bytecode or source code. Dynamic weaving, on the other hand,
applies aspects during runtime, often through the use of proxies or bytecode manipulation techniques:

Figure 9.1: Elements of AOP

https://doc.postsharp.net/?pk_vid=919254c8a0a73ae51691117837edbc2f
https://doc.postsharp.net/?pk_vid=919254c8a0a73ae51691117837edbc2f
https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH09/CH09_AopWithPostSharp
https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH09/CH09_AopWithPostSharp

AOP 253

By utilizing AOP, developers can address cross-cutting concerns more effectively. Some benefits of
using AOP include the following:

1.	 Modularity: AOP allows for cleaner separation of concerns (SoC) by encapsulating cross-cutting
functionality in aspects. This leads to modular code that is easier to develop, maintain, and test.

2.	 Code reusability: Aspects can be reused across multiple components or modules, reducing
code duplication and promoting code reuse. This results in more efficient and maintainable
code bases.

3.	 Improved readability: AOP helps to improve code readability by removing the clutter of cross-
cutting concerns from core business logic. Aspects provide a centralized and explicit way of
expressing such concerns, making the code base easier to understand.

4.	 Runtime configuration: AOP frameworks often provide mechanisms for configuring aspects
at runtime. This flexibility allows developers to enable or disable specific aspects or adjust their
behavior without modifying the underlying code base.

5.	 SoC: AOP promotes a clear separation between the core functionality of the system and
cross-cutting concerns. This separation makes the code base more modular and maintainable,
facilitating collaboration among developers working on different aspects of the system.

AOP is a programming paradigm that provides a powerful mechanism to address cross-cutting
concerns in software systems. By encapsulating these concerns in aspects and applying them to join
points through weaving, AOP enhances code modularity, maintainability, and readability. It enables
developers to focus on core business logic while handling cross-cutting concerns in a modular and
reusable manner.

AOP frameworks

AOP frameworks, such as PostSharp, can be a valuable tool for C# programmers to keep business logic
separate from AOP concerns. PostSharp integrates directly into the C# build process and provides a
wide range of AOP features that can be applied to the code base.

Here’s how PostSharp can be utilized to achieve separation between business logic and AOP concerns:

•	 Attribute-based programming: PostSharp allows developers to define aspects using attributes.
By applying these attributes to classes, methods, or properties, developers can specify the cross-
cutting concerns that need to be applied. This approach keeps AOP concerns clearly separated
from business logic code.

•	 Compile-time weaving: PostSharp performs weaving during the compilation process, modifying
intermediate language (IL) code before it gets compiled into the final executable. This means
that aspects are applied at compile time, enabling early validation and minimizing runtime
overhead. The modified IL code contains the woven aspects, while the original business logic
remains untouched.

AOP with PostSharp254

Note
Understanding the distinction between compile-time modification and dynamic AOP is
crucial when considering unit-testing strategies. Compile-time modifications provide a clear
and predictable testing environment, while dynamic AOP introduces runtime variability that
requires careful consideration in the testing process.

•	 Aspect composition: PostSharp supports aspect composition, allowing multiple aspects to
be combined and applied to the same code element. This feature enables developers to apply
multiple cross-cutting concerns without introducing code duplication or tangled dependencies.
Aspects can be applied individually or as a group, providing flexibility in managing different
AOP concerns.

•	 SoC: PostSharp helps C# programmers to separate business logic from AOP concerns by
keeping aspects separate from the core code base. Developers can define and maintain aspects
independently, making it easier to manage and modify the AOP behavior without directly
modifying business logic. This separation enhances code modularity and improves the overall
structure of the system.

•	 Configuration and fine-grained control: PostSharp provides configuration options that allow
developers to fine-tune the behavior of aspects. Developers can specify when and where aspects
should be applied, enable or disable specific aspects based on runtime conditions, or provide
custom parameters to influence aspect behavior. This configurability helps in keeping business
logic clean and unaffected by the specifics of AOP concerns.

•	 Integration with existing code bases: PostSharp seamlessly integrates with existing C# code
bases, requiring minimal changes to the code structure. Developers can apply aspects selectively
to specific classes or methods, ensuring that only necessary parts of the code are affected by
AOP concerns. This integration facilitates the adoption of AOP in both new and legacy projects
without disrupting the existing code base.

By utilizing PostSharp or similar AOP frameworks, C# programmers can effectively keep business
logic separate from AOP concerns. They can define and manage aspects independently, apply them
selectively, and easily modify AOP behavior without directly modifying the core code base. This
separation promotes code modularity, maintainability, and readability, making it easier to manage
cross-cutting concerns in C# applications. Let’s now look at how AOP works with PostSharp.

How AOP works with PostSharp
You add the PostSharp package to your project. Then, you annotate your code with attributes. The
C# compiler builds your code into binary, and then PostSharp analyzes the binary and injects the
implementation of aspects. Although binaries are modified with injected code at compile time, your
project’s source code remains unaltered. This means you can keep your code nice, clean, and simple,
which in turn makes maintenance, reuse, and extending existing code bases much easier in the long term.

How AOP works with PostSharp 255

PostSharp has some really good ready-made patterns for you to utilize. These cover Model-View-
ViewModel (MVVM), caching, multithreading, logging and architecture validation, and more. But
the good news is that if none of these meets your requirements, then you can automate your own
patterns by extending the aspect framework and/or the architecture framework.

With the aspect framework, you develop your simple or composite aspect, apply it to the code,
and validate its usage. As for the architectural framework, you develop your custom architectural
constraints. Before we delve into cross-cutting concerns, let’s briefly take a look at extending the
aspect and architectural frameworks.

You need to add the PostSharp.Redist NuGet package when writing aspects and attributes.
Once done, if you find that your attributes and aspects are not working, then right-click on the project
and select Add PostSharp to Project. After you’ve done this, your aspects should work.

Extending the aspect framework

In this section, we are going to develop a simple aspect and apply it to some code. Then, we will
validate the usage of our aspect.

Developing our aspect

Our aspect will be a simple one that is composed of a single transformation. We will derive our
aspect from a primitive aspect class. Then, we will override some methods known as advice. If you
would like to know how to create a composite aspect, you can read how to do so at https://doc.
postsharp.net/complex-aspects.

Injecting behaviors before and after the method execution

The OnMethodBoundaryAspect aspect implements the decorator pattern. With this aspect, you
can execute logic before and after the execution of a target method. The following table provides a list
of advice methods that are available in the OnMethodBoundaryAspect class:

Advice method Description
OnEntry(MethodExe-
cutionArgs)

Used when the method’s execution starts, before any user code.

OnSuccess(MethodEx-
ecutionArgs)

Used when the method’s execution succeeds (that is, returns without
an exception), after any user code.

OnException(Metho-
dExecutionArgs)

Used when the method execution fails with an exception, after any
user code. It is equivalent to a catch block.

OnExit(MethodExecu-
tionArgs)

Method executed after the body of methods to which this aspect
is applied, even when the method exists with an exception (this
method is invoked from the finally block).

Table 9. 1: List of active methods

https://doc.postsharp.net/complex-aspects
https://doc.postsharp.net/complex-aspects

AOP with PostSharp256

For our simple aspect, we are going to look at all methods in use. Before we begin, add PostSharp to
your project. If you have already downloaded PostSharp, you can right-click on your project and then
select Add PostSharp to Project. After that, add a new folder to your project called Aspects, and
then add a new class called LoggingAspect:

[PSerializable]
public class LoggingAspect : OnMethodBoundaryAspect { }

The [PSerializeable] attribute is a custom attribute that, when applied to a type, causes PostSharp
to generate a serializer for use by PortableFormatter. Now, override the OnEntry method:

public override void OnEntry(MethodExecutionArgs args) {
 Console.WriteLine(“The {0} method has been entered.”, args.Method.
Name);
}

The OnEntry method is executed before any user code. Now, override the OnSuccess method:

publicoverridevoid OnSuccess(MethodExecutionArgs args) {
 Console.WriteLine(“The {0} method executed successfully.”, args.
Method.Name);
}

The OnSuccess method runs after the user code has completed without an exception. Override
the OnExit method:

Public override void OnExit(MethodExecutionArgs args) {
 Console.WriteLine(“The {0} method has exited.”, args.Method.Name);
}

The OnExit method executes when the user method completes successfully or unsuccessfully and
exits. It is equivalent to a finally block. Finally, override the OnException method:

publicoverridevoid OnException(MethodExecutionArgs args) {
 Console.WriteLine(“An exception was thrown in {0}.”, args.Method.
Name);
}

The OnException method executes when the method execution fails with an exception, after any
user code. It is equivalent to a catch block.

The next step is to write two methods we can apply LoggingAspect to. We’ll add SuccessfulMethod:

[LoggingAspect]
private static void SuccessfulMethod() {
 Console.WriteLine(“Hello World, I am a success!”);
}

How AOP works with PostSharp 257

SuccessfulMethod uses LoggingAspect and prints a message to the console. Now, let’s
add FailedMethod:

[LoggingAspect]
private static void FailedMethod() {
 Console.WriteLine(“Hello World, I am a failure!”);
 var x = 1;
 var y = 0;
 var z = x / y;
}

FailedMethod uses LoggingAspect and prints a message to the console. Then, it performs a
division-by-zero operation, which results in DivideByZeroException. Call both of these methods
from your Main method, and then run through your project. You should see the following output:

The SuccessfulMethod has been entered.
Hello World, I am a success!
The SuccessfulMethod executed successfully
The FailedMethod has been entered.
Hello World, I am a failure!

An exception was thrown in FailMethod. At this point, the debugger will cause the program to exit.
That’s it. As you can see, creating your own PostSharp aspects to meet your needs is a simple process.
Now, we will look at adding our own architectural constraint.

Extending the architectural framework

An architectural constraint is the adoption of custom design patterns that must be respected across
all modules. We will implement a scalar constraint that validates an element of code.

Our scalar constraint, called BusinessRulePatternValidation, will validate that any class
deriving from the BusinessRule class must have a nested class named Factory. Start by adding
a BusinessRulePatternValidation class:

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance =
MulticastInheritance.Strict)]
publicclass BusinessRulePatternValidation : ScalarConstraint { }

MulticastAttributeUsage designates that this validation aspect will only work with classes
and inheritance allowed. Let’s override the ValidateCode method:

Public override void CodeValidation(object target)
{
 var targetType = (Type)target;
 if (targetType.GetNestedType(“Factory”) == null)
 {

AOP with PostSharp258

 Message.Write(
 targetType, SeverityType.Warning,
 “10”,
 “You must include a ‘Factory’ as a nested type for {0}.”,
 targetType.DeclaringType,
 targetType.Name);
 }
}

Our ValidateCode method checks whether the target object has a nested Factory type. If the
Factory type is not present, then an exception message is written to the output window. Add a
BusinessRule class:

 [BusinessRulePatternValidation]
 public class BusinessRule { }

The BusinessRule class is empty and devoid of Factory. It has our BusinessRulePat-
ternValidation attribute assigned to it, which is an architectural constraint. Build your project,
and you will see a message in the output window. We will now start to build a reusable class library
that you can extend and use in your own projects to address cross-cutting concerns.

Project – Cross-cutting concerns reusable library
In this section, we will be working through writing a reusable library for addressing various cross-
cutting concerns. It will have limited functionality, but it will give you the knowledge you need to
further expand the project for your own needs. The class library you will be creating will be a .NET
standard library so that it can be used for apps that target both .NET Framework and .NET Core. You
will also create a .NET Framework console application to see the library in action.

The concerns we will be handling as we progress through the project are as follows:

•	 Caching

•	 Logging

•	 Exception handling

•	 Security

•	 Validation

•	 Resource pool

•	 Configuration settings

•	 Instrumentation

Project – Cross-cutting concerns reusable library 259

Figure 9.2: Screenshot of the project you’ll be creating

Start by creating a new .NET standard class library called CrossCuttingConcerns. Then, add a
.NET Framework console application to TestHarness solution and select Do not use high-level
statements. We will be adding reusable functionality to address various concerns, starting with caching.

Adding a caching concern
Caching is a storage technique for improving performance when accessing various kinds of resources. The
cache used can be memory, a filesystem, or a database. The type of cache you use will be dependent on
the needs of the project. For our demonstration, we will be using memory caching to keep things simple.

Add a folder called Caching to the CrossCuttingConcerns project. Then, add a class called
MemoryCache. Add the following NuGet packages to the project:

•	 PostSharp

•	 PostSharp.Patterns.Common

•	 PostSharp.Patterns.Diagnostics

•	 System.Runtime.Caching

Update the MemoryCache class with the following code:

public static class MemoryCache {
 public static T GetItem<T>(string itemName, TimeSpan timeInCache,
Func<T> itemCacheFunction) {
 var cache = System.Runtime.Caching.MemoryCache.Default;
 var cachedItem = (T) cache[itemName];
 if (cachedItem != null) return cachedItem;

AOP with PostSharp260

 var policy = new CacheItemPolicy {AbsoluteExpiration =
DateTimeOffset.Now.Add(timeInCache)};
 cachedItem = itemCacheFunction();
 cache.Set(itemName, cachedItem, policy);
 return cachedItem;
 }
}

The GetItem method takes the name of the cached item, itemName, the length of time the item is
to remain in the cache, timeInCache, and the function to call to place the item in the cache if it is
not already there, itemCacheFunction. Add a new class to the TestHarness project and call
it TestClass. Then, add GetCachedItem and GetMessage methods, as shown:

public string GetCachedItem() {
 return MemoryCache.GetItem<string>(“Message”, TimeSpan.
FromSeconds(30), GetMessage);
}
private string GetMessage() {
 return “Hello, world of cache!”;
}

The GetCachedItem method gets a string called “Message” from the cache. If it is not in the
cache, then it will be stored in the cache by the GetMessage method for 30 seconds.

Update your Main method in the Program class to call the GetCachedItem method, as shown:

var harness = new TestClass();
Console.WriteLine(harness.GetCachedItem());
Console.WriteLine(harness.GetCachedItem());
Thread.Sleep(TimeSpan.FromSeconds(1));
Console.WriteLine(harness.GetCachedItem());

The first call to GetCachedItem stores the item in the cache and then returns it. The second call
obtains the item from the cache and returns it. The sleeping thread invalidates the cache, and so the
last call stores the item in the cache before returning it.

Adding file logging capabilities

In our project, logging, auditing, and instrumentation processes will send their output to a text file. So,
we will need a class to manage adding files if they don’t exist, and then adding the output to those files
and saving them. Add a FileSystem folder to the class library. Then, add a class called LogFile.
Set the class as public static and add the following member variables:

private static string _location = string.Empty;
private static string _filename = string.Empty;
private static string _file = string.Empty;

Project – Cross-cutting concerns reusable library 261

The _location variable is assigned to the folder for the entry assembly. The _filename variable
is assigned the name of the file with the file extension. We need to add a Logs folder at runtime (if it
does not exist). So, we will add an AddDirectory method to the FileSystem class:

private static void AddDirectory() {
 if (!Directory.Exists(_location))
 Directory.CreateDirectory(“Logs”);
}

The AddDirectory method checks whether the location exists. If it does not exist, then the directory
is created. Next, we need to deal with adding a file if it does not exist. So, add an AddFile method:

private static void AddFile() {
 _file = Path.Combine(_location, _filename);
 if (File.Exists(_file)) return;
 using (File.Create($”Logs\\{_filename}”)) {
 }
}

In the AddFile method, we combine the location and filename. If the filename already exists, then
we exit the method; otherwise, we create a file. If we don’t use the using statement, we will encounter
IOException when we create our first record, but subsequent saves will be fine. So, by using the
using statement, we avoid the exception and log the data. We can now write a method that actually
saves the data to a file. Add an AppendTextToFile method:

public static void AppendTextToFile(string filename, string text) {
 _location = $”{Path.GetDirectoryName(Assembly.GetEntryAssembly()?.
Location)}\\Logs”;
 _filename = filename;
 AddDirectory();
 AddFile();
 File.AppendAllText(_file, text);
}

The AppendTextToFile method takes a filename and text and sets the location to that of the entry
assembly. It then ensures that the file and directory exist. Then, it saves the text to the specified file. Our
file logging capabilities are now taken care of, so now, we can move on to look at our logging concern.

AOP with PostSharp262

Adding a logging concern

Most applications need some form of logging. The usual methods of logging are to the console,
filesystem, event logs, and database. In our project, we will only focus on console and text file logging.
Add a folder called Logging to the class library. Then, add a file called ConsoleLoggingAspect
and update it as follows:

[PSerializable]
public class ConsoleLoggingAspect : OnMethodBoundaryAspect { }

The [PSerializable] attribute informs PostSharp to generate a serializer for use by Porta-
bleFormatter. ConsoleLoggingAspect inherits from OnMethodBoundaryAspect. The
OnMethodBoundaryAspect class has methods that we can override to add code before a method
body executes, after a method body executes, when a method body executes successfully, and when an
exception is encountered. We will override these methods to output a message to the console. This can
be a very useful tool when it comes to debugging to see whether code actually gets called and whether
it successfully completes or encounters an exception. We will start by overriding the OnEntry method:

public override void OnEntry(MethodExecutionArgs args) {
 Console.WriteLine($”Method: {args.Method.Name}, OnEntry().”);
}

The OnEntry method executes before the body of our method does, and our override prints out
the name of the method being executed and its own name. Next, we’ll override the OnExit method:

public override void OnExit(MethodExecutionArgs args) {
 Console.WriteLine($”Method: {args.Method.Name}, OnExit().”);
}

The OnExit method executes after the body of our method has finished executing, and our override
prints out the name of the method that has been executed and its own name. Now, we’ll add an
OnSuccess method:

public override void OnSuccess(MethodExecutionArgs args) {
 Console.WriteLine($”Method: {args.Method.Name}, OnSuccess().”);
}

The OnSuccess method executes after the body of the method it is applied to has finished and returns
without exception. When our override executes, it prints out the name of the executed method and
its own name. The last method we will override is the OnException method:

public override void OnException(MethodExecutionArgs args) {
 Console.WriteLine($”An exception was thrown in {args.Method.Name}.
{args}”);
}

Project – Cross-cutting concerns reusable library 263

The OnException method executes when an exception is encountered, and in our override, we print out
the name of the method and the argument’s object. To apply the attribute, use ConsoleLoggingAspect.
To add a text file logging aspect, add a class called TextFileLoggingAspect. TextFileLoggin-
gAspect is identical to ConsoleLoggingAspect, apart from the contents of the overridden methods.
The OnEntry, OnExit, and OnSuccess methods call the LogFile.AppendTextToFile method
and append the contents to the Log.txt file. The OnException method does the same, except it
appends the contents to the Exception.log file. Here is the OnEntry example:

public override void OnEntry(MethodExecutionArgs args) {
 LogFile.AppendTextToFile(“Log.txt”, $”\nMethod: {args.Method.
Name}, OnEntry().”);
}

That is our logging taken care of. Now, we’ll move on to adding our exceptions concern.

Adding an exception-handling concern

It is inevitable with software that exceptions will be experienced by users of the software. So, there
needs to be some way to log them. The normal way of logging exceptions is to store the error in a file
on the user’s system, such as with Exception.log. That’s what we’ll do in this section. We will
inherit from the OnExceptionAspect class and write our exception data to the Exception.
log file, which will be located in the Logs folder of our application.

OnExceptionAspect wraps the tagged method in a try-catch block. Add a new Exceptions
folder to the class library, and then add a file called ExceptionAspect with the following code:

[PSerializable]
public class ExceptionAspect : OnExceptionAspect {
 public string Message { get; set; }
 public Type ExceptionType { get; set; }
 public FlowBehavior Behavior { get; set; }

 public override void OnException(MethodExecutionArgs args) {
 var message = args.Exception != null ? args.Exception.Message
: “Unknown error occurred.”;
 LogFile.AppendTextToFile(
 “Exceptions.log”, $”\n{DateTime.Now}: Method: {args.
Method}, Exception: {message}”
);
 args.FlowBehavior = FlowBehavior.Continue;
 }

 public override Type GetExceptionType(System.Reflection.MethodBase
targetMethod) {

AOP with PostSharp264

 return ExceptionType;
 }
}

The ExceptionAspect class is assigned the [PSerializable] aspect and inherits from
OnExceptionAspect. We have three properties: Message, ExceptionType, and FlowBehavior.
Message contains the exception message, ExceptionType contains the type of exception
encountered, and FlowBehavior determines whether execution continues once the exception is
handled or whether the process terminates. The GetExceptionType method returns the type of
exception that was thrown. The OnException method starts by constructing an error message. It
then logs the exception to the file by calling LogFile.AppendTextToFile. Finally, the flow of
the exception’s behavior is set to continue.

All you have to do to use the ExceptionAspect aspect is add it as an attribute to your method.
We have now covered exception handling. So, we’ll move on to adding our security concern.

Adding a security concern

The security needs will be specific to the project being worked on. The most common concerns are
that users are authenticated and authorized to access and use various parts of the system. In this
section, we will use the decorator pattern to implement a secure component with role-based methods.

Security is a very large subject in itself and beyond the scope of this book. There are many good APIs
out there, such as the various Microsoft APIs. Refer to https://docs.microsoft.com/en-us/
dotnet/standard/security/ for more information, and for OAuth 2.0, refer to https://
oauth.net/code/dotnet/. We will leave you to select and implement your own method of
security. In this chapter, we simply add our own custom-defined security using the decorator pattern.
You can use this as a base for implementing any of the aforementioned security methods.

Add a new folder called Security, and add an interface to it called ISecureComponent:

public interface ISecureComponent {
 void AddData(dynamic data);
 int EditData(dynamic data);
 int DeleteData(dynamic data);
 dynamic GetData(dynamic data);
}

Our secure component interface contains the preceding four methods, which are self-explanatory. The
dynamic keyword means that any type of data can be passed in as a parameter and that any type of
data can be returned from the GetData method. Next, we need an abstract class that implements
the interface. Add a class called DecoratorBase, as shown:

public abstract class DecoratorBase : ISecureComponent {
 private readonly ISecureComponent _secureComponent;

https://docs.microsoft.com/en-us/dotnet/standard/security/
https://docs.microsoft.com/en-us/dotnet/standard/security/
https://oauth.net/code/dotnet/
https://oauth.net/code/dotnet/

Project – Cross-cutting concerns reusable library 265

 public DecoratorBase(ISecureComponent secureComponent)
 {
 _secureComponent = secureComponent;
 }
}

The DecoratorBase class implements ISecureComponent. We declare a member variable of
the ISecureComponent type and set it in the default constructor. We need to add missing methods
of ISecureComponent. Add an AddData method:

public virtual void AddData(dynamic data) {
 _secureComponent.AddData(data);
}

This method will take any type of data and then pass it into the call to the AddData method of
_secureComponent. Add missing methods for EditData, DeleteData, and GetData. Now,
add a class called ConcreteSecureComponent, which implements ISecureComponent. For
each method, write a message to the console. For the DeleteData and EditData methods, also
return a value of 1. Return “Hi!” for GetData. The ConcreteSecureComponent class is the
class that executes the secure work that we are interested in.

Note
In the context of ASP.NET, you can use the HTTPContext class to obtain the currently
logged-in user. For non-web applications such as console applications, you can use either
Thread.CurrentPrinciple or WindowsIdentity.GetCurrent(), depending
on the authentication mechanism being used.

We need a way to validate the user and obtain their role. The role will be checked before executing
any methods. So, add the following struct:

public readonly struct Credentials {
 public static string Role { get; private set; }
 public Credentials(string username, string password) {
 switch (username)
 {
 case “System” when password == “Administrator”:
 Role = “Administrator”;
 break;
 case “End” when password == “User”:
 Role = “Restricted”;
 break;
 default:

AOP with PostSharp266

 Role = “Imposter”;
 break;
 }
 }
}

To keep things simple, the struct takes a username and password and sets the appropriate role.
Restricted users have fewer privileges than administrators. The final class for our security concern is
the ConcreteDecorator class. Add the class, as follows:

public class ConcreteDecorator : DecoratorBase {
 public ConcreteDecorator(ISecureComponent secureComponent) :
base(secureComponent) { }
}

The ConcreteDecorator class inherits the DecoratorBase class. Our constructor takes a type
of ISecureComponent and passes it to the base class. Add an AddData method:

public override void AddData(dynamic data) {
 if (Credentials.Role.Contains(“Administrator”) || Credentials.
Role.Contains(“Restricted”)) {
 base.AddData((object)data);
 } else {
 throw new UnauthorizedAccessException(“Unauthorized”);
 }
}

AddMethod checks the user’s role against the allowed Administrator and Restricted roles.
If the user is in one of these roles, then the AddData method is executed in the base class; otherwise,
UnauthorizedAccessException is thrown. The rest of the methods follow this same pattern.
Override the rest of the methods, but make sure the DeleteData method can only be executed
by administrators.

We will now put our security concerns to work. Create a new class called ConcreteSecureComponent
that inherits from ISecureComponent and implement its methods. Add the following line to the
top of the Program class:

private static readonly ConcreteDecorator ConcreteDecorator = new
ConcreteDecorator(new ConcreteSecureComponent());

We are declaring and instantiating a concrete decorator object and passing in a concrete secure object.
This object will be referenced in our data methods. Update the Main method, as follows:

private static void Main(string[] _) {
 new Credentials(“End”, “User”);
 DoSecureWork();

Project – Cross-cutting concerns reusable library 267

 Console.WriteLine(“Press any key to exit.”);
 Console.ReadKey();
}

We assign the username and password to the Credentials struct. This causes Role to be set. We
then call the DoWork method. The DoWork method will be responsible for calling data methods.
We then pause for the user to press any key and exit. Add a DoSecureWork method:

private static void DoSecureWork() {
 AddData();
}

The DoSecureWork method calls each of the data methods that call the data methods on the concrete
decorator. Add an AddData method:

[ExceptionAspect]
private static void AddData() {
 ConcreteDecorator.AddData(“Hello, world!”);
}

The ExceptionAspect class is applied to the AddData method. This will ensure any errors
are logged to the Exceptions.log file. The parameter is set to true, so an error message
will also be printed in the console window. The method itself calls the AddData method on the
ConcreteDecorator class. Add the rest of the methods by following the same procedure. Then,
run your code. You should see the following output:

Press any key to continue.

We now have a working role-based object, complete with exception handling. Our next step is to
implement our validation concern.

Adding a validation concern

All user-entered data should be validated as it could be malicious, incomplete, or in the wrong format.
You need to ensure that your data is clean and cannot cause harm. For our demonstration concern,
we will implement null validation. Start by adding a folder called Validation to the class library.
Then, add a new class called AllowNullAttribute:

[AttributeUsage(AttributeTargets.Parameter | AttributeTargets.
ReturnValue | AttributeTargets.Property)]
public class AllowNullAttribute : Attribute { }

AOP with PostSharp268

This attribute allows nulls on parameters, return values, and properties. Now, add a ValidationFlags
enum to a new file of the same name:

[Flags]
public enum ValidationFlags {
 Properties = 1,
 Methods = 2,
 Arguments = 4,
 OutValues = 8,
 ReturnValues = 16,
 NonPublic = 32,
 AllPublicArguments = Properties | Methods | Arguments,
 AllPublic = AllPublicArguments | OutValues | ReturnValues,
 All = AllPublic | NonPublic
}

These flags are used to determine which items an aspect can be applied to. Next, we’ll add a class
called ReflectionExtensions:

public static class ReflectionExtensions {
 private static bool IsCustomAttributeDefined<T>(this
ICustomAttributeProvider value) where T
 : Attribute {
 return value.IsDefined(typeof(T), false);
 }
 public static bool AllowsNull(this ICustomAttributeProvider value)
{
 return value.IsCustomAttributeDefined<AllowNullAttribute>();
 }
 public static bool MayNotBeNull(this ParameterInfo arg){
 return !arg.AllowsNull() && !arg.IsOptional && !arg.
ParameterType.IsValueType;
 }
}

The IsCustomAttributeDefined method returns true if the attribute type is defined on this
member, and false otherwise. The AllowsNull method returns true if the AllowNull attribute is
already applied, and false if not. The MayNotBeNull method checks to see whether nulls are allowed,
whether the parameter is optional, and what type of value the parameter is. A Boolean value is then returned
by performing logical AND operations on these values. It’s time to add DisallowNonNullAspect:

[PSerializable]
public class DisallowNonNullAspect : OnMethodBoundaryAspect {
 private int[] _inputArgumentsToValidate;
 private int[] _outputArgumentsToValidate;

Project – Cross-cutting concerns reusable library 269

 private string[] _parameterNames;
 private bool _validateReturnValue;
 private string _memberName;
 private bool _isProperty;
 public DisallowNonNullAspect() : this(ValidationFlags.AllPublic) {
}
 public DisallowNonNullAspect(ValidationFlags validationFlags) {
 ValidationFlags = validationFlags;
 }
 public ValidationFlags ValidationFlags { get; set; }
}

This class has the PSerializable attribute applied to inform PostSharp to generate a serializer
for PortableFormatter. It also inherits the OnMethodBoundaryAspect class. We then
declare variables to hold the input and output arguments as validated parameter names, return value
validation and the member name, and check whether the item being validated is a property. The
default constructor is configured to allow the validator to be applied to all public members. We also
have a constructor that takes a ValidationFlags value and a ValidationFlags property.
Now, we’ll override the CompileTimeValidate method:

public override bool CompileTimeValidate(MethodBase method) {
 var methodInformation = MethodInformation.
GetMethodInformation(method);
 var parameters = method.GetParameters();
 if (!ValidationFlags.HasFlag(ValidationFlags.NonPublic) &&
!methodInformation.IsPublic) return false;
 if (!ValidationFlags.HasFlag(ValidationFlags.Properties) &&
methodInformation.IsProperty)
 return false;
 if (!ValidationFlags.HasFlag(ValidationFlags.Methods) &&
!methodInformation.IsProperty) return false;
 _parameterNames = parameters.Select(p => p.Name).ToArray();
 _memberName = methodInformation.Name;
 _isProperty = methodInformation.IsProperty;

 var argumentsToValidate = parameters.Where(p => p.MayNotBeNull()).
ToArray();
 _inputArgumentsToValidate = ValidationFlags.
HasFlag(ValidationFlags.Arguments) ? argumentsToValidate.Where(p =>
!p.IsOut).Select(p => p.Position).ToArray() : new int[0];
 _outputArgumentsToValidate = ValidationFlags.
HasFlag(ValidationFlags.OutValues) ? argumentsToValidate.Where(p =>
p.ParameterType.IsByRef).Select(p => p.Position).ToArray() : new
int[0];
 if (!methodInformation.IsConstructor) {
 _validateReturnValue = ValidationFlags.

AOP with PostSharp270

HasFlag(ValidationFlags.ReturnValues) && methodInformation.
ReturnParameter.MayNotBeNull();
 }
 var validationRequired = _validateReturnValue || _
inputArgumentsToValidate.Length > 0 || _outputArgumentsToValidate.
Length > 0;

 return validationRequired;
}

This method ensures that the aspect is correctly applied at compile time. If the aspect is applied to a
wrong type of member, then false is returned. Otherwise, it returns true. We now override the
OnEntry method:

public override void OnEntry(MethodExecutionArgs args) {
 foreach (var argumentPosition in _inputArgumentsToValidate) {
 if (args.Arguments[argumentPosition] != null) continue;
 var parameterName = _parameterNames[argumentPosition];

 if (_isProperty) {
 throw new ArgumentNullException(parameterName,
 $”Cannot set the value of property ‘{_memberName}’ to
null.”);
 } else {
 throw new ArgumentNullException(parameterName);
 }
 }
}

This method checks the input arguments to validate. If any arguments are null , then
ArgumentNullException is thrown; otherwise, the method exits without throwing an exception.
Let’s override the OnSuccess method now:

public override void OnSuccess(MethodExecutionArgs args) {
 foreach (var argumentPosition in _outputArgumentsToValidate) {
 if (args.Arguments[argumentPosition] != null) continue;
 var parameterName = _parameterNames[argumentPosition];
 throw new InvalidOperationException($”Out parameter
‘{parameterName}’ is null.”);
 }

 if (!_validateReturnValue || args.ReturnValue != null) return;

 if (_isProperty) {
 throw new InvalidOperationException($”Return value of property
‘{_memberName}’ is null.”);

Project – Cross-cutting concerns reusable library 271

 }
 throw new InvalidOperationException($”Return value of method ‘{_
memberName}’ is null.”);
}

The OnSuccess method validates the output parameters to validate. If any arguments are null,
then InvalidOperationException will be thrown. The next thing we need to do is add
a private class for extracting method information. Add the following class to the bottom of the
DisallowNonNullAspect class before the closing brace:

private class MethodInformation { }

Add the following three constructors to the MethodInformation class:

 private MethodInformation(ConstructorInfo constructor) :
this((MethodBase)constructor) {
 IsConstructor = true;
 Name = constructor.Name;
 }

 private MethodInformation(MethodInfo method) : this((MethodBase)
method) {
 IsConstructor = false;
 Name = method.Name;
 if (method.IsSpecialName &&
 (Name.StartsWith(“set_”, StringComparison.Ordinal) ||
 Name.StartsWith(“get_”, StringComparison.Ordinal))) {
 Name = Name.Substring(4);
 IsProperty = true;
 }
 ReturnParameter = method.ReturnParameter;
 }

 private MethodInformation(MethodBase method)
 {
 IsPublic = method.IsPublic;
 }

These constructors differentiate between constructors and methods and perform the necessary
initialization of the method. Add the following method:

private static MethodInformation CreateInstance(MethodInfo method) {
 return new MethodInformation(method);
}

AOP with PostSharp272

The CreateInstance method creates a new instance of the MethodInformation class
based on the MethodInfo data of the method passed in and returns that instance. Add a
GetMethodInformation method:

public static MethodInformation GetMethodInformation(MethodBase
methodBase) {
 var ctor = methodBase as ConstructorInfo;
 if (ctor != null) return new MethodInformation(ctor);
 var method = methodBase as MethodInfo;
 return method == null ? null : CreateInstance(method);
}

This method casts methodBase to ConstructorInfo and checks for null. If ctor is not
null, then a new MethodInformation class is generated based on the constructor. However, if
ctor is null, then methodBase is cast to MethodInfo. If the method is not null, then the
CreateInstance method is called, passing in the method. Otherwise, null is returned. Finally,
add the following properties to the class:

public string Name { get; private set; }
public bool IsProperty { get; private set; }
public bool IsPublic { get; private set; }
public bool IsConstructor { get; private set; }
public ParameterInfo ReturnParameter { get; private set; }

These properties are properties of the method that has the aspect applied. We have now finished writing our
validation aspect. You can now use the validator to allow nulls by attaching the AllowNull attribute. You
can disallow nulls by attaching DisallowNonNullAspect. Now, we’ll add our transaction concern.

Adding a transaction concern

Transactions are processes that must run to completion or roll back. Add a new Transactions
folder to the class library, and then add a RequiresTransactionAspect class:

[PSerializable]
[AttributeUsage(AttributeTargets.Method)]
public sealed class RequiresTransactionAspect : OnMethodBoundaryAspect
{
 public override void OnEntry(MethodExecutionArgs args) {
 var transactionScope = new
TransactionScope(TransactionScopeOption.Required);
 args.MethodExecutionTag = transactionScope;
 }

 public override void OnSuccess(MethodExecutionArgs args) {
 var transactionScope = (TransactionScope)args.
MethodExecutionTag;

Project – Cross-cutting concerns reusable library 273

 transactionScope.Complete();
 }

 public override void OnExit(MethodExecutionArgs args) {
 var transactionScope = (TransactionScope)args.
MethodExecutionTag;
 transactionScope.Dispose();
 }
}

The OnEntry method starts the transaction, the OnSuccess method completes the transaction, and the
OnExit method disposes of the transaction. To use the aspect, add RequiresTransactionAspect
to your method. To log any exceptions that prevent the completion of the transaction, you can also assign the
[ExceptionAspect(consoleOutput: false)] aspect. Next, we’ll add our resource pool concern.

Adding a resource pool concern

Resource pools are a good way to improve performance when multiple instances of an object are
expensive to create and destroy. We will create a very simple resource pool for our needs. Add a folder
called ResourcePooling, and then add a ResourcePool class:

public class ResourcePool<T> {
 private readonly ConcurrentBag<T> _resources;
 private readonly Func<T> _resourceGenerator;

 public ResourcePool(Func<T> resourceGenerator) {
 _resourceGenerator = resourceGenerator ??
 throw new
ArgumentNullException(nameof(resourceGenerator));
 _resources = new ConcurrentBag<T>();
 }

 public T Get() => _resources.TryTake(out T item) ? item : _
resourceGenerator();
 public void Return(T item) => _resources.Add(item);
}

This class creates a new resource generator and stores resources in ConcurrentBag. When an item
is requested, it issues a resource from the pool. If one does not exist, then it is created, added to the
pool, and issued to the caller:

var pool = new ResourcePool<Course>(() => new Course()); // Create a
new pool of Course objects.
var course = pool.Get(); // Get course from pool.
pool.Return(course); // Return the course to the pool.

AOP with PostSharp274

The code you’ve just seen shows you how to use the ResourcePool class to create a pool, obtain
a resource, and return it to the pool.

Adding a configuration settings concern

Configuration settings should always be centralized. Since desktop applications store their settings
in the app.config file and web applications store their settings in Web.config, we can use
ConfigurationManager to access the application settings. Add the System.Configuration.
ConfigurationNuGet library to your class library and test the harness. Then, add a folder called
Configuration and the following Settings class:

public static class Settings {
 public static string GetAppSetting(string key) {
 return System.Configuration.ConfigurationManager.
AppSettings[key];
 }

 public static void SetAppSettings(this string key, string value) {
 System.Configuration.ConfigurationManager.AppSettings[key] =
value;
 }
}

This class will get and set app settings in the Web.config file and the App.config file. To include
the class in your files, add the following using statement:

using static CrossCuttingConcerns.Configuration.Settings;

The following code shows you how to use the methods:

Console.WriteLine(GetAppSetting(“Greeting”));
“Greeting”.SetAppSettings(“Goodbye, my friends!”);
Console.WriteLine(GetAppSetting(“Greeting”));

Using the static import, you don’t have to include the class prefix. You can extend the Settings
class to get connection strings or to do whatever configuration you need in your apps.

Adding an instrumentation concern

Our final cross-cutting concern is that of instrumentation. We use instrumentation to profile our
application and see how long it takes for methods to execute. Add an Instrumentation folder
to the class library, and then add an InstrumentationAspect class, as shown:

[PSerializable]
[AttributeUsage(AttributeTargets.Method)]

PostSharp and build pipeline considerations 275

public class InstrumentationAspect : OnMethodBoundaryAspect {
 public override void OnEntry(MethodExecutionArgs args) {
 LogFile.AppendTextToFile(“Profile.log”,
 $”\nMethod: {args.Method.Name}, Start Time: {DateTime.
Now}”);
 args.MethodExecutionTag = Stopwatch.StartNew();
 }

 public override void OnException(MethodExecutionArgs args) {
 LogFile.AppendTextToFile(“Exception.log”,
 $”\n{DateTime.Now}: {args.Exception.Source} - {args.
Exception.Message}”);
 }

 public override void OnExit(MethodExecutionArgs args) {
 var stopwatch = (Stopwatch)args.MethodExecutionTag;
 stopwatch.Stop();
 LogFile.AppendTextToFile(“Profile.log”,
 $”\nMethod: {args.Method.Name}, Stop Time: {DateTime.Now},
Duration: {stopwatch.Elapsed}”);
 }
}

As you can see, the instrumentation aspect only applies to methods, times the start and stop times of
the method, and logs the profile information to the Profile.log file. If an exception is encountered,
then the exception is logged to the Exception.log file.

PostSharp and build pipeline considerations
When it comes to integrating PostSharp into a build pipeline, there are a few key considerations:

1.	 Installation on build server: PostSharp is typically installed on the build server as part of the
build process. This ensures that the necessary PostSharp tasks and tools are available during
the compilation of your code. The build server needs to have PostSharp installed globally, or
at least in a location accessible during the build process. This may involve using tools such as
NuGet to manage PostSharp as a package or manually installing it on the build server.

2.	 Build process integration: In your project file (for example, .csproj for a C# project), you
would typically include references to PostSharp targets or tasks. These references inform the build
system to execute PostSharp tasks during the build process. PostSharp tasks will analyze your code
and apply the specified aspects. This step usually occurs after the compilation of the source code.

3.	 Configuration: You may need to configure PostSharp within your project. This configuration
includes specifying which aspects to apply, configuring aspect behavior, and other settings
relevant to your application’s needs.

AOP with PostSharp276

4.	 License considerations: If you’re using a licensed version of PostSharp, ensure that the build
server has the necessary license information. Some licensing models may require additional
configuration to work seamlessly in a continuous integration (CI) environment.

5.	 Build server compatibility: Ensure that your build server is compatible with the version of
PostSharp you’re using. PostSharp evolves over time, and new versions might introduce changes
that affect the build process.

6.	 Integration with CI/CD tools: PostSharp integrates well with popular CI/CD tools such as
Jenkins, TeamCity, Azure DevOps, and others. You may need to configure your CI/CD pipeline
to include steps for installing PostSharp and executing the necessary build tasks.

Integrating PostSharp into a build pipeline involves installing it on the build server, configuring
your project files to include PostSharp tasks, and ensuring that the build server has the necessary
dependencies and licenses. The specifics may vary based on the build system and tools you are using.
Always refer to the latest documentation for PostSharp and your chosen CI/CD system for the most
accurate and up-to-date information.

Dynamic AOP with Castle.DynamicProxy
AOP allows you to separate cross-cutting concerns from your main business logic. Using a dynamic
AOP library such as Castle.DynamicProxy in C# allows you to add aspects at runtime. Here’s
a minimal example demonstrating dynamic AOP with Castle.DynamicProxy. You will need
to add Castle.DynamicProxy to your project. Start by adding a LoggingAspect class:

using Castle.DynamicProxy;
using System;
public class LoggingAspect : IInterceptor
{
 public void Intercept(IInvocation invocation)
 {
 Console.WriteLine($”Before method {invocation.Method.Name}”);

 // Invoke the original method
 invocation.Proceed();

 Console.WriteLine($”After method {invocation.Method.Name}”);
 }
}

This class implements the IInterceptor interface. Upon receipt of an invocation, the LoggingAspect
class writes a message to the console, invokes the original methods, and then closes by writing another
message to the console. Next, add a Calculator class, which we’ll use for our target class:

public class Calculator
{

Dynamic AOP with Castle.DynamicProxy 277

 public virtual int Add(int a, int b)
 {
 Console.WriteLine(“Adding numbers”);
 return a + b;
 }
}

All this class does is add two integers and return the result. Now, update the Program class’s Main
method as follows:

static void Main()
{
 // Create a proxy generator
 ProxyGenerator generator = new ProxyGenerator();

 // Create the target object
 Calculator calculator = new Calculator();

 // Create the proxy with the logging aspect
 Calculator proxy = generator
.CreateClassProxyWithTarget<Calculator>(calculator, new
LoggingAspect());

 // Call the method on the proxy
 int result = proxy.Add(3, 5);
 Console.WriteLine($”Result: {result}”);
}

In this example, we have a Calculator class with an Add method. We also have a LoggingAspect
class that implements the IInterceptor interface from Castle.DynamicProxy. This interceptor
logs a message before and after the method is called.

The Main method demonstrates how to create a dynamic proxy using Castle.DynamicProxy.
The LoggingAspect class is added to the Calculator class at runtime. When you call the Add
method on the proxy, the logging aspect intercepts the method call, logs messages, and then proceeds
with the original method.

This is a minimal example, but you can extend it to include more complex aspects and handle various
cross-cutting concerns dynamically.

We now have a functional and reusable cross-cutting concerns library. Let’s summarize what we have
learned in this chapter.

AOP with PostSharp278

Summary
We started the chapter by learning what AOP is, and we also discussed AOP frameworks that enable
the separation of cross-cutting concerns from business logic when you are programming. This helps
you to focus on business logic and keep your code clean and succinct.

Next, we covered how AOP works with PostSharp. We covered extending the aspect framework
by developing our own aspect, injecting aspect behaviors before and after method execution, and
extending the architectural framework.

Finally, we built a reusable library to address various cross-cutting concerns. These concerns included
caching, logging, exception handling, security, validation, resource pool, configuration settings, and
instrumentation concerns.

In the next chapter, we will look at using tools to help you improve your code quality. But before then,
test your knowledge and then further your reading.

Questions
1.	 What is an aspect and how do you apply one?

2.	 What is an attribute and how do you apply one?

3.	 How do aspects and attributes work together?

4.	 How does the build process work with aspects?

Further reading
Here is a list of resources specifically about addressing AOP and PostSharp in C#:

•	 PostSharp documentation: https://doc.postsharp.net/

•	 Introduction to AOP and PostSharp: https://www.codeproject.com/
Articles/337564/Introduction-to-Aspect-Oriented-Programming-
AOP-an

•	 Questions tagged with [postsharp]: https://stackoverflow.com/questions/
tagged/postsharp

•	 AOP with PostSharp: Aspect Oriented Programming with PostSharp - YouTube: https://
www.youtube.com/watch?v=dtx4Vnbe570&t=20s

•	 PostSharp samples: https://github.com/postsharp/PostSharp.Samples

Please note that the availability of these resources may vary, and some of them may require a subscription
or purchase to access the full content. Additionally, some of the resources might be specific to older
versions of PostSharp, so make sure to check the documentation and version compatibility for the
most up-to-date information.

https://doc.postsharp.net/
https://www.codeproject.com/Articles/337564/Introduction-to-Aspect-Oriented-Programming-AOP-an
https://www.codeproject.com/Articles/337564/Introduction-to-Aspect-Oriented-Programming-AOP-an
https://www.codeproject.com/Articles/337564/Introduction-to-Aspect-Oriented-Programming-AOP-an
https://stackoverflow.com/questions/tagged/postsharp
https://stackoverflow.com/questions/tagged/postsharp
https://www.youtube.com/watch?v=dtx4Vnbe570&t=20s
https://www.youtube.com/watch?v=dtx4Vnbe570&t=20s
https://github.com/postsharp/PostSharp.Samples

10
Using Tools to Improve

Code Quality

As a programmer, enhancing code quality is one of your chief concerns. Improving the quality of
your code demands the utilization of various tools. Tools designed to improve your code and speed
up development include code metrics, quick actions, the JetBrains dotTrace profiler, JetBrains
ReSharper, and Telerik JustDecompile.

This is what we’ll be doing in this chapter. To do so, we will cover the following topics:

•	 Defining good-quality code

•	 Performing code cleanup and calculating code metrics

•	 Performing code analysis

•	 Using quick actions

•	 Using the JetBrains dotTrace profiler

•	 Using JetBrains ReSharper

•	 Using Telerik JustDecompile

By the end of this chapter, you will be able to do the following:

•	 Use code metrics to measure software complexity and maintainability

•	 Use quick actions to make changes using a single command

•	 Profile your code and analyze bottlenecks with JetBrains dotTrace

•	 Refactor code using JetBrains ReSharper

•	 Decompile code and generate a solution using Telerik JustDecompile

Using Tools to Improve Code Quality280

Technical requirements
To follow along with this chapter, you will need the following:

•	 Visual Studio 2019 or higher

•	 JetBrains ReSharper

•	 JetBrains dotTrace profiler

•	 Telerik JustDecompile

•	 The source code for this chapter: https://github.com/PacktPublishing/Clean-
Code-with-CSharp-Second-Edition/tree/main/CH10

Code analysis
Visual Studio provides a code analysis toolset that helps developers improve code quality, find issues,
and maintain coding standards.

Open the CH4 project. Then, from the Project menu, select the CH4 Properties menu item. This
will bring up the Properties dialog box for the CH4 project. From the left-hand tabs, select the Code
Analysis tab. You should see the following screen:

Figure 10.1: The Code Analysis page for the CH4 project

https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH10
https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH10

Code analysis 281

From this page, you can select the active rules that you want to use. Clicking on the Configure button
brings up the ruleset editor dialog:

Figure 10.2: The Code Analysis page’s ruleset editor dialog

By default, we are using Microsoft Managed Recommended Rules, which can be found in the C:\
Program Files\Microsoft Visual Studio\2022\Community\Team Tools\
Static Analysis Tools\Rule Sets\MinimumRecommendedRules.ruleset file.
When a ruleset is opened, you can select and deselect rules that you would like to have applied during
code analysis.

You can click on ruleset files and open them in Visual Studio. If you open a ruleset file in Notepad,
you will see that it is an XML file. So, any text editor that can read XML can be used to open, view,
and edit these files.

Once you have configured your rules, you are ready to perform code analysis on your project. To
manually run code analysis, select Analyze | Run Code Analysis | On Solution. To view the results, you
will need to open the Error List tab. Select View | Error List to open the Error List tab if it is closed.

For our CH4 solution, you will see the following in the Error List tab:

Figure 10.3: The Error List tab after running code analysis on the CH4 solution

Using Tools to Improve Code Quality282

As shown in Figure 10.3, our solution has one warning and six suggestions under Information. In
this instance, we can address the warning by upgrading from Post-build Code Analysis to FxCop
analyzers that run during the build process. Then, we can process each of the six suggestions provided
as information on how we can improve our code.

Using quick actions
Another handy tool that I like to use is the Quick Action tool. Appearing as a screwdriver (), a
lightbulb (), or an error light bulb () on a line of code, quick actions enable you to use a single
command that will generate code, refactor code, suppress warnings, perform code fixes, and add
using statements.

Look at the screenshot shown in Figure 10.4:

Figure 10.4: The VS editor showing the Quick Action Bulb

The GetMailMessage method in the DemoWorker class has line 30 highlighted with a lightbulb
in the left-hand margin:

Using the JetBrains dotTrace profiler 283

Figure 10.5: The Quick Action tool displaying quick actions that can be performed on line 30

We can see that we have several quick actions available to us that we can perform on line 30. Object
initialization can be simplified, we can use an explicit type instead of var, introduce a local, introduce
method parameters, and even suppress configuration issues. Using these suggestions, we would have
a reusable method with simplified code that is more succinct and easier to read.

Pro tip
Warnings can be really bad in your code, such as “this variable is not used,” because they can
underline subtle bugs and other issues with your code. You can change the default severity
levels of warnings to errors and prevent your code from compiling. This will force you to change
the code that’s been flagged to clean code with the issue removed. You can read more about
quick actions on the Microsoft website: https://learn.microsoft.com/en-us/
visualstudio/ide/quick-actions?view=vs-2022.

Using the JetBrains dotTrace profiler
The JetBrains dotTrace profiler is a part of the JetBrains ReSharper Ultimate license. Since we will be looking
at both tools, I recommend that you download and install JetBrains ReSharper Ultimate before we continue.

Pro tip
JetBrains does have a trial version available if you don’t already own a copy. There are versions
available for Windows, macOS, and Linux.

https://learn.microsoft.com/en-us/visualstudio/ide/quick-actions?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/ide/quick-actions?view=vs-2022

Using Tools to Improve Code Quality284

The JetBrains dotTrace profiling tool works with Mono, .NET Framework, and .NET Core. All
application types are supported by the profiler, and you can use the profiler to analyze and track down
performance issues with your code base. The profiler will help you get to the bottom of such problems
that cause 100% CPU usage, 100% of the disk I/O, maxing out the memory or running into overflow
exceptions, and many other issues.

Many applications perform HyperText Transfer Protocol (HTTP) requests. The profiler will analyze
how the application is processing these requests, and it will also do the same with Structured Query
Language (SQL) queries on a database. Static methods and unit tests can be profiled, and you can
view the results from within Visual Studio. There is also a standalone version that you can use.

There are four basic profiling options – Sampling, Tracing, Line-by-Line, and Timeline. The first
time you start looking at the performance of an application, you may decide to use Sampling, which
provides an accurate measurement of call time. Tracing and Line-by-Line offer more detailed profiling,
but they do add more overhead (memory and CPU usage) to the program being profiled. Timeline is
like sampling and collects application events over time. Between them, no problem can’t be tracked
down and resolved.

Advanced profiling options include real-time performance counters, thread time, real-time CPU
instructions, and thread cycle time. The real-time performance counters measure the time between
method entry and exit. Thread time measures the thread running time. Based on the CPU register,
the real-time CPU instructions provide an accurate time of method entry and exit.

The profiler can attach to running .NET Framework 4.0 (or later) or .NET Core 3.0 (or later) applications
and processes, profile local applications, and profile remote applications. These include standalone
applications, .NET Core applications, Internet Information Services (IIS)-hosted web applications,
IIS Express-hosted applications, .NET Windows Services, Windows Communication Foundation
(WCF) services, Windows Store and Universal Windows Platform (UWP) applications, any .NET
processes (started after you run the profiling session), desktop or console applications based on Mono,
and Unity editor or standalone Unity applications.

To access the profiler in Visual Studio 2022 from the menu, select Extensions | ReSharper | Profile
| Show dotTrace Performance Profiler:

Figure 10.6: The dotTrace Performance Profiler with no snapshots collected

Using JetBrains ReSharper 285

In Figure 10.6, the dotTrace profiler has been configured to profile the performance of the CH4 project
using the Timeline profiling type. If you have multiple projects in your solution, you can change the
project being profiled and add projects to be profiled, and you can change the profile type. Here, the
profile types are Timeline, Sampling, Tracing, and Line-by-Line. We’ll profile CH4 using the Sampling
profiling type, the output of which can be seen in Figure 10.7:

Figure 10.7: The result of the dotTrace Performance Profiler on the CH4 project

From Figure 10.7, we can drill down into threads and the code subsystems and view the decompiled code.
There is also the option to show the Intermediate Language (IL) code. Here, we can see the payload,
the assembly name, and its version, and we can also see how many milliseconds it took to run the code.

Here, you can view Thread Tree, Call Tree, Plan List, and Hot Spots. These different views of
the profile can help you determine if there are any bottlenecks and long-running pieces of code.
Then, from this information, you can determine what areas of the code base need to be improved
upon performance-wise.

Pro tip
Visual Studio has its own profiler that you can use. To learn more about Visual Studio’s profiler, visit
the Microsoft website at https://learn.microsoft.com/en-us/visualstudio/
profiling/profiling-feature-tour?view=vs-2022.

Using JetBrains ReSharper
In this section, we’ll look at how JetBrains ReSharper can help you improve your code. ReSharper is
quite an extensive tool, and just as with the profiler, which is a part of the Ultimate edition of ReSharper,

https://learn.microsoft.com/en-us/visualstudio/profiling/profiling-feature-tour?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/profiling/profiling-feature-tour?view=vs-2022

Using Tools to Improve Code Quality286

we will only be scratching the surface. However, hopefully, you will come to appreciate what the tool
is and what it can do for you to improve your Visual Studio coding experience:

Refactoring Feature Visual Studio (Base) ReSharper
Rename ✔️ ✔️

Extract Method ✔️ ✔️

Extract Interface/Class ✔️ ✔️

Move Code ✔️ ✔️

Inline Variable/Method ✔️ ✔️

Change Signature ✔️ ✔️

Encapsulate Field ✔️ ✔️

More Refactoring Options ✔️

Intelligent Code Analysis ✔️

Advanced Code Navigation ✔️

Live Templates ✔️

Code Quality Inspections ✔️

Context-Aware Code Completion ✔️

Performance Improvements ✔️

Unit Testing Integration ✔️

Table 10.1: Visual Studio and ReSharper refactoring tools comparison

Here are a few benefits of using ReSharper:

•	 With ReSharper, you can analyze your code quality.

•	 It provides options for improving your code, removing code smells, and fixing coding problems.

•	 With the navigation system, you can completely traverse your solution and jump to any
item of interest. You have many different helpers, which include extended IntelliSense, code
reorganization, and more.

•	 Refactoring benefits from ReSharper’s offerings, which can be localized or solution-wide.

•	 You can also generate source code using ReSharper, such as base classes and superclasses, and
inline methods.

•	 Here, code can be cleaned up in keeping with your company’s coding policies to get rid of
unused imports and other unused code.

Using JetBrains ReSharper 287

Pro tip
You can refactor using Visual Studio’s in-built refactoring tools or ReSharper. ReSharper performs
better refactoring, but it does come with a slight performance penalty within Visual Studio.
There is some really good refactoring help on the Microsoft website at https://learn.
microsoft.com/en-us/visualstudio/ide/refactoring-in-visual-
studio?view=vs-2022.

You can visit the ReSharper menu from the Visual Studio Extensions menu. When in the code editor,
right-clicking on a piece of code will bring up a context menu with the appropriate menu items. The
ReSharper menu item in the context menu is Refactor This..., as shown in the following screenshot:

Figure 10.8: The Visual Studio context menu showing the ReSharper Refactor This… menu option

https://learn.microsoft.com/en-us/visualstudio/ide/refactoring-in-visual-studio?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/ide/refactoring-in-visual-studio?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/ide/refactoring-in-visual-studio?view=vs-2022

Using Tools to Improve Code Quality288

Open the CH4 project in Visual Studio. Now, from the Visual Studio menu, run Extensions |
ReSharper | Inspect | Code Issues in Solution. ReSharper will process the solution and then display
the Inspection Results window, as shown in the following screenshot:

Figure 10.9: The Inspection Results window showing results for the CH4 solution inspection

Using JetBrains ReSharper 289

We can see that ReSharper found 89 issues with the CH4 solution:

•	 5 x Common Practices and Code Improvements

•	 48 x Redundancies in Code

•	 28 x Redundancies in Symbol Declarations

You can expand each of these groups and double-click on each item in the list. Doing so will take you
to the specific line of code so that you can implement the suggestions.

Open the GoodCodeBadCode.sln solution from the first edition of this book or GitHub repository
of this chapter in Visual Studio.. ReSharper can also generate dependency diagrams. To generate a
dependency diagram for our solution, select Extensions | ReSharper | Architecture | Show Project
Dependency Diagram. This will display the project dependency diagram for our solution. The black
container box called CH06 is the namespace, and the gray/blue boxes prefixed with CH06_ are projects,
as illustrated in the following screenshot:

Figure 10.10: The ReSharper architecture dependency diagram

As you can see from the project dependency diagram in the CH06 namespace, there is a project
dependency between CH06_SpecFlow and CH06_SpecFlow.Implementation. Similarly,
you can also generate type dependency diagrams using ReSharper. Select Extensions | ReSharper |
Architecture | Type Dependencies Diagram.

If we generate the diagram for ConcreteClass in the CH10_AddressingCrossCuttingConcerns
project, then the diagram will be generated, but only the ConcreteComponent class will be
displayed initially. Right-click on the ConcreteComponent box on the diagram and select Add
All Referenced Types. You will see the addition of the ExceptionAttribute class and the
IComponent interface. Right-click on the ExceptionAttribute class and select Add All
Referenced Types; you will end up with the following output:

Using Tools to Improve Code Quality290

Figure 10.11: The ReSharper type dependency diagram

What’s wonderful about this tool is that you can order the diagram elements by namespace. This can
be useful for massive solutions with multiple large projects and deep-nested namespaces. Though it’s
good that we can right-click on code and go to the item declaration, you can’t beat visually seeing the
lay of the land in terms of the project that you are working on, and that is why this tool can be really
useful. Here is an example of a typed dependencies diagram organized by namespaces:

Figure 10.12: The ReSharper type dependency diagram

Using JetBrains ReSharper 291

Often, I could have used a diagram such as this in my day-to-day work. This diagram is technical
documentation that will help developers find their way around a complex solution. They will be able to
see which namespaces are available and how everything is interlinked. This will empower developers
with the correct knowledge as to where new classes, enums, and interfaces should be placed when
performing new development, but also, they will know where to find objects if they are performing
maintenance. This diagram is also good for finding duplicate namespaces, interfaces, and object names.

Now, let’s look at coverage. Proceed as follows:

1.	 Select Extensions | ReSharper | Cover | Cover Application.

2.	 The Coverage Configuration dialog will be displayed.

Figure 10.13: The Resharper coverage configuration screen. This image

is only to show the layout; text readability is not required.

3.	 Click on +Add to create a run configuration. This will bring up the New Run Configuration
dialog as shown in Figure 10.14.

Using Tools to Improve Code Quality292

Figure 10.14: The New Run Configuration dialog

4.	 Select Standalone and then click on the Next button.

5.	 Select your executable and provide a name for your run configuration as shown in Figure 10.15.

Using JetBrains ReSharper 293

Figure 10.15: The next step of the New Run Configuration dialog

6.	 You can select a .NET app from the bin folder. Then once you are done click on the Save button.

7.	 The Coverage Configuration dialog should look similar to Figure 10.16 depending upon the
version of the JetBrains tools you are using. Tick the Collect profiling data from start checkbox.

Figure 10.16: Coverage Configuration dialog. This image is only to

show the layout; text readability is not required.

8.	 Click the Run button to start the application and collect profiling data. ReSharper will display
the following dialog:

Using Tools to Improve Code Quality294

Figure 10.17 – The ReSharper snapshot dialog

The application will then run. As the application is running, the coverage profiler will be
collecting data. Our selected executable is a console application that displays the following data:

Figure 10.18 – The ReSharper coverage profiler running in the

console window Our application's console window

9.	 Click the console window, and then press any key to exit. The coverage dialog will disappear,
and storage will then be initialized. Finally, the Coverage Results Browser window will be
displayed, as shown here:

Figure 10.19 – The ReSharper Coverage Results Browser window

Using Telerik JustDecompile 295

This window contains really useful information. It provides a visual indicator of code that was not
called, marked in red. The code that was executed is marked in green. Using this information, you can
see if the code is dead code that can be removed or was not executed due to the path that was taken
through the system but is still required, was commented out for testing purposes, or was simply not
called because the developer forgot to add the call in the correct place or a condition check was wrong.

Pro tip
When removing dead code, you need to be extra vigilant as sometimes what appears as dead
code may get executed under certain scenarios. So, it is best to take extra care when removing
code classified as dead code, just in case you do delete code by accident that is actually required.

To go to the item of interest, you just have to double-click on the item. Once you’ve done this, you
will be taken to the specific code you are interested in.

Now that you’ve been introduced to ReSharper and had a look at tools that can assist you in writing
good, clean C# code, it is time to look at our next tool, called Telerik JustDecompile.

Using Telerik JustDecompile

Pro tip
You can learn about Visual Studio’s in-built decompilation tools and processes on the Microsoft
Learn website: https://learn.microsoft.com/en-us/visualstudio/debugger/
decompilation?view=vs-2022.

I have used Telerik JustDecompile on several occasions, for things such as tracking down bugs in
third-party libraries, recovering essential project source code that has been lost, checking the strength
of assembly obfuscation, and learning purposes. It is a tool that I highly recommend as it has proven
its worth many times over the years.

The decompilation engine is open source and you can obtain the source code from https://
github.com/telerik/justdecompileengine, so you are free to contribute to the project
and write extensions for it. You can download Windows Installer from the Telerik website at https://
www.telerik.com/products/decompiler.aspx. All source code is fully navigable. The
decompiler is available as a standalone application or as a Visual Studio extension. You can create
VB.NET or C# projects from assemblies that you decompile, and you can extract and save resources
from the decompiled assemblies.

Download and install Telerik JustDecompile. Once you’ve done this, we’ll go through the decompilation
process and generate a C# project from an assembly. You may be prompted to install other tools during
the installation process, but you can deselect the other offerings from Telerik.

https://learn.microsoft.com/en-us/visualstudio/debugger/decompilation?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/debugger/decompilation?view=vs-2022
https://github.com/telerik/justdecompileengine
https://github.com/telerik/justdecompileengine
https://www.telerik.com/products/decompiler.aspx
https://www.telerik.com/products/decompiler.aspx

Using Tools to Improve Code Quality296

Run the Telerik JustDecompile standalone application. Find a .NET assembly and then drag it into the
left pane of Telerik JustDecompile. It will decompile the code and display the code tree on the left. If
you select an item on the left, the code will be shown on the right, as shown in the following screenshot:

Figure 10.20: The Telerik JustDecompile window

As you can see, the decompilation process is fast and it does a pretty good job of decompiling our
assembly. The decompilation is not perfect, but in most cases, it does the job. Proceed as follows:

1.	 In the dropdown to the right of the Plugins menu item, select C#.

2.	 Then, click on Tools | Create Project.

3.	 You will sometimes be prompted to select the .NET version to target; other times, you won’t be.

4.	 Then, you will be asked where to save the project.

5.	 The project will then be written to that location.

Once you’ve done this, you can open the project in Visual Studio and work on it. Should you encounter
any problems, Telerik will log the issues in your code and provide an email. You can always email them
with any issues you encounter. They are good at responding to and fixing problems.

Continuous integration with GitHub Actions and CodeQL
In this section, we will look at continuous integration with GitHub Actions and CodeQL.

Continuous integration with GitHub Actions and CodeQL 297

GitHub Actions can be utilized to set up a workflow for continuous integration with CodeQL analysis
in a C# project. Here’s a simplified YAML example:

name: CodeQL Analysis

on:
  push:
    branches:
      - main

jobs:
  analyze:
    runs-on: ubuntu-latest

    strategy:
      matrix:
        language: [csharp]

    steps:
    - name: Checkout repository
      uses: actions/checkout@v2

    - name: Set up CodeQL
      uses: github/codeql-action/init@v1
      with:
        languages: ${{ matrix.language }}

    - name: Build and Run CodeQL analysis
      run: |
        dotnet build
        codeql database create --language=csharp --source-root .
--database ${{ runner.workspace }}/codeql-database
        codeql analyze --database ${{ runner.workspace }}/codeql-
database

In this example, the workflow triggers each push to the main branch, checks out the code, sets up
CodeQL for C#, builds the project, and runs CodeQL analysis.

CodeQL supports multiple languages, including C#. It allows you to find and fix security vulnerabilities,
making it a valuable tool for code quality and security.

With that, we have finished looking at various tools. Now, let’s summarize what we have learned.

Using Tools to Improve Code Quality298

Summary
In this chapter, you saw how code metrics provide several measurements of code quality, and how easy
it is to generate them. Code metrics include the number of lines – including blank lines – versus the
number of executable lines of code, the cyclomatic complexity, the level of cohesion and coupling, and
how maintainable your code is. The refactoring color codes are green for “good”, yellow for “ideally
needs refactoring”, and red for “definitely needs refactoring”.

You then saw how easy it is to provide a static code analysis of projects and view the results. Viewing
and modifying rulesets that govern what gets analyzed and what doesn’t get analyzed was also covered.
Then, you experienced quick actions and learned how to perform bug fixes, add using statements,
and refactor code with a single command.

Then, we used the JetBrains dotTrace profiler to measure our application’s performance, track down
bottlenecks, and identify hungry methods that take up the most processing time. The next tool we
looked at was JetBrains ReSharper, which enables us to inspect code for various problems and potential
improvements. We identified a couple of them and made the necessary changes and saw how easy
it was to improve the code with this tool. Then, we looked at creating architectural diagrams for
dependencies and type dependencies.

Finally, we looked at Telerik JustDecompile, a very useful tool that can be used to decompile assemblies
and generate projects in either C# or VB.NET from them. This can be very useful when bugs are
encountered or the program needs to be expanded, but you no longer have access to the existing
source code.

In the chapters that follow, we will mainly be looking at code and how we can refactor it. But for now,
test your knowledge with the following questions and further your reading with the links provided
in the Further reading section.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 What are code metrics, and why should we use them?

2.	 Name six code metric measurements.

3.	 What is code analysis, and why is it useful?

4.	 What are quick actions?

5.	 What is JetBrains dotTrace used for?

6.	 What is JetBrains ReSharper used for?

7.	 Why use Telerik JustDecompile to decompile assemblies?

Further reading 299

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 Official Microsoft documentation on code metrics: https://docs.microsoft.com/
en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019

•	 Official Microsoft documentation on quick actions: https://learn.microsoft.
com/en-us/visualstudio/ide/quick-actions?view=vs-
2022&viewFallbackFrom=vs-2020

•	 JetBrains dotTrace profiler: https://www.jetbrains.com/profiler/

•	 Automating your workflows with GitHub Actions: https://docs.github.com/en/
actions.

•	 Performing semantic code analysis with CodeQL: https://codeql.github.com/

https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://learn.microsoft.com/en-us/visualstudio/ide/quick-actions?view=vs-2022&viewFallbackFrom=vs-2020
https://learn.microsoft.com/en-us/visualstudio/ide/quick-actions?view=vs-2022&viewFallbackFrom=vs-2020
https://learn.microsoft.com/en-us/visualstudio/ide/quick-actions?view=vs-2022&viewFallbackFrom=vs-2020
https://www.jetbrains.com/profiler/
https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://codeql.github.com/

11
Refactoring C# Code

In this chapter, we will look at the problem code and how to refactor it. In the industry, problematic
code is normally termed code smell. It is code that compiles, runs, and does what it is supposed to do.
The reason it is problem code is that it becomes unreadable, complex in nature, and makes the code
base hard to maintain and extend further down the line. Such code should be refactored as soon as
it’s feasible to do so. It is technical debt, and in the long run, if you don’t deal with it, it will bring the
project to its knees. When this happens, you are looking at an expensive redesign and must recode
the application from scratch.

So, what is refactoring? Refactoring is the process of taking existing code that works and rewriting it
such that the code becomes clean. As you have already discovered, clean code is easy to read, easy to
maintain, and easy to extend.

In this chapter, we will cover the following topics:

•	 Identifying application-level code smells and how we can address them

•	 Identifying class-level code smells and how we can address them

•	 Identifying method-level code smells and how we can address them

After working your way through this chapter, you will be able to do the following:

•	 Identify different kinds of code smells

•	 Understand why the code is classed as a code smell

•	 Refactor code smells so they become clean code

We’ll start our look at refactoring code smells by looking at application-level code smells.

Refactoring C# Code302

Technical requirements
You will need the following prerequisites for this chapter:

•	 Visual Studio 2019 or higher

•	 PostSharp

The code files for this chapter can be found at https://github.com/PacktPublishing/
Clean-Code-with-CSharp-Second-Edition/tree/main/CH11.

Application-level code smells
Application-level code smells are problem code scattered through the application and affect every
layer. No matter what layer of the software you find yourself in, you will see the same problematic
code appearing over and over again. If you don’t address these issues now, then you will find that your
software will start to die a slow and agonizing death.

In this section, we will look at application-level code smells and how we can remove them. Let’s start
with Boolean blindness.

Boolean blindness

Boolean data blindness refers to information loss as determined by functions that work on Boolean
values. Using a better structure provides better interfaces and classes that keep data, making for a
more pleasant experience in working with data.

Let’s look at the problem of Boolean blindness via this code sample:

public void BookConcert(string concert, bool standing)
{
 if (standing)
 {
 // Issue standing ticket.
 }
 else
 {
 // Issue sitting ticket.
 }
}

This method takes a string for the concert’s name and a Boolean value indicating whether the person
is standing or seated. Now, we can call the code as follows:

private void BooleanBlindnessConcertBooking()
{

https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH11
https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH11

Application-level code smells 303

 var booking = new ProblemCode.ConcertBooking();
 booking.BookConcert(“Solitary Experiments”,standing: true);
}

If someone new to the code saw the BooleanBlindnessConcertBooking() method, do you
think they would instinctively know what true stands for? I think not. They would be blind to what
it means. So, they would have to either use IntelliSense or locate the method being referred to, to find
the meaning. They are Boolean blind. So, how can we cure them of this blindness?

Well, a simple solution would be to replace the Boolean with an enum. Let’s start by adding our enum,
which is called TicketType:

[Flags]
internal enum TicketType
{
 Seated,
 Standing
}

Our enum identifies two types of ticket types: Seated and Standing . Now, let’s add
our ConcertBooking() method:

internal void BookConcert(string concert, TicketType ticketType)
{
 if (ticketType == TicketType.Seated)
 {
 // Issue seated ticket.
 }
 else
 {
 // Issue standing ticket.
 }
}

The following code shows how to call the newly refactored code:

private void ClearSightedConcertBooking()
{
 var booking = new RefactoredCode.ConcertBooking();
 booking.BookConcert(“Chrom”, TicketType.Seated);
}

Now, if that new person came along and looked at this code, they would see that we are booking a
concert to see the band Chrom and that we want seated tickets.

Refactoring C# Code304

Combinatorial explosion

Combinatorial explosion is a byproduct of the same thing being performed by different pieces of code
using different combinations of parameters. Let’s look at an example that adds numbers:

public int Add(int x, int y)
{
 return x + y;
}

public double Add(double x, double y)
{
 return x + y;
}

public float Add(float x, float y)
{
 return x + y;
}

Here, we have three methods that all add numbers. The return types and parameters are all different. Is
there a better way? Yes – through the use of generics. By using generics, you can have a single method
that is capable of working with different types. And so, we will be using generics to solve our addition
problem. This will allow us to have a single addition method that will accept integers, doubles, or
floats. Let’s have a look at our new method:

public T Add<T>(T x, T y)
 where T : struct // Add a value type constraint, assuming you want
to support only value types
{
 // Ensure that T supports the + operator
 if (typeof(T).GetMethod(“op_Addition”) == null)
 {
 throw new InvalidOperationException(“Type T must support the +
operator.”);
 }

 return (dynamic)x + (dynamic)y;
}

This generic method is called with a specific type assigned to T. It performs the addition and returns the
result. Only one version of the method is required for the different .NET types that can be added together.

The method will only accept value types based on the value type constraint. We check the type to
ensure that it will accept the + operator. Then, we perform the addition and return the correct type.

Application-level code smells 305

To call the code for int, double, and float values, we would do the following:

var addition = new RefactoredCode.Maths();
addition.Add<int>(1, 2);
addition.Add<double>(1.2, 3.4);
addition.Add<float>(5.6f, 7.8f);

We have just eliminated three methods and replaced them with a single method that performs the
same task.

Contrived complexity

When you can develop code with simple architecture, but instead implement an advanced and rather
complex architecture, this is known as contrived complexity. Unfortunately, I have suffered having to work
on such systems and it is a proper pain and cause of stress. What you find with such systems is that they
tend to have a high turnover of staff. They lack documentation, and no one seems to know the system or can
answer questions from onboarders – the poor souls who have to learn the system to maintain and extend it.

My advice to all super-intelligent software architects is that when it comes to software, Keep It Simple,
Stupid (KISS). Remember, the days of permanent employment with jobs for life appear to be a thing
of the past now. Oftentimes, programmers are more for chasing the money than showing lifelong
loyalty to the business. So, with the business relying on the software for revenue, you need a system
that is easy to understand, to onboard new staff, maintain, and extend. Ask yourself this question: If
the systems that you are responsible for suddenly experienced yourself and all staff assigned to them
walking out and finding new opportunities, would the new staff who take over be able to hit the ground
running? Or would they be left stressed out and scratching their heads?

Also, bear in mind that if you have only one person on the team who understands that system and
they die, move on to a new location, or retire, where does that leave you and the rest of the team? And
even more than that, where does it leave the business?

I cannot stress enough that you are to KISS. The only reason for creating complex systems and not
documenting them and sharing the architectural knowledge is to hold the business over a barrel so
that they keep you on and you can bleed them dry. I have seen this happen in different companies I
have worked for. Don’t do it. In my experience, the more complicated a system is, the quicker it dies
a death and has to be rewritten.

Note
KISS code is normally self-explanatory and easy to read. Complex code is often not easy to read, so
it needs to be well documented. But in my extensive experience, people start with good intentions
to document complex code and make it a mandatory policy. But then, with tight deadlines, ever-
growing demands, and even lazy programmers, I have found that documentation is one of the
first casualties of a complex system with complex code. And in the end, nobody wants to work
on it because they don’t understand it. And so, this can lead to a high developer turnaround.

Refactoring C# Code306

In Chapter 10, Using Tools to Improve Code Quality, you learned how to use Visual Studio tools
to discover the cyclomatic complexity and depth of inheritance. You also learned how to produce
dependency diagrams with ReSharper. Use these tools to discover problem areas in the code, then
focus on those areas. Reduce cyclomatic complexity down to a value of 10 or less, then reduce the
depth of inheritance on all objects down to no greater than 1.

Once you’ve done this, make sure all classes only perform the tasks that they are meant to. Aim
to keep methods small. A good rule of thumb is to have no more than around 10 lines of code per
method. As for method parameters, replace long parameter lists with parameter objects. And where
you have a lot of out parameters, refactor the method so that it returns a tuple or object. Identify any
multithreading, and make sure that the code being accessed is thread-safe.

Also, look for the Quick Tips icons. These will normally suggest one-click refactorings for the line
of code they highlight. I recommend that you use them. These were mentioned in Chapter 10, Using
Tools to Improve Code Quality.

The next code smell to consider is the data clump.

Data clump

A data clump occurs when you see the same fields appearing together in different classes and parameter
lists. Their names usually follow the same pattern. This is normally a sign that a class is missing
from the system. The reduction in system complexity will come by identifying the missing class and
generalizing it. Don’t be put off by the fact that the class may only be small, and never think of a class
as being unimportant. If there is a need for a class to simplify the code, then add it.

Let’s see a simple example:

Order order = new Order
{
 OrderId = 1,
 OrderDate = DateTime.Now,
 CustomerFirstName = “John”,
 CustomerLastName = “Doe”
};

In this code, the Order class has two properties called CustomerFirstName and
CustomerLastName. These same properties are part of a Customer class. So, what we should
do is replace them with a Customer class property, as follows:

Order order = new Order
{
 OrderId = 1,
 OrderDate = DateTime.Now,
 Customer = new Customer { “John”, “Doe” }
};

Application-level code smells 307

The code is much cleaner because instead of having the same two properties in the Customer class
and the Order class, we now only have them in the Customer class. In the Order class, we have
a property that defines Customer, in which we can set the customer’s first and last name.

Deodorant comments

When a comment uses nice words to excuse bad code, this is known as a deodorant comment. If the
code is bad, then refactor it to make it good and remove the comment. If you don’t know how to refactor
it to make it good, then ask for help. If there is no one to ask who can help you, then post your code
on Stack Overflow or present your case to ChatGPT. Some very good programmers on StackOverflow
can be a real help to you. Just make sure you follow the rules when posting! Also, ChatGPT is good
at taking complex code, simplifying it, and even correcting it. The main advantage of using ChatGPT
over StackOverflow is that you get real-time answers to your questions.

Duplicate code

Duplicate code is code that occurs more than once. Problems that arise from duplicate code include
increased maintenance costs per duplication. When a developer is fixing a piece of code, it costs the
business time and money. Fixing one bug is technical debt (programmer’s pay) x 1. But if there are
10 duplications of that code, that’s technical debt x 10. So, the more that code is duplicated, the more
expensive it is to maintain. Then, there is the boredom factor of having to fix the same problem in
multiple locations and the fact that duplication may get overlooked by the programmer doing the bug fix.

It is best to refactor the duplicate code so that only one copy of the code exists. Often, the easiest way
to do this is to add it to a new reusable class in your current project and place it in a class library. The
benefit of placing reusable code in a class library is that other projects can use the same file.

The .NET standard libraries can be accessed by all C# project types on Windows, Linux, macOS, iOS,
and Android. When writing reusable libraries, it is best to stick with the standard libraries to avoid
code issues when targeting different deployment platform targets, and only use platform-specific
libraries when the standard libraries do not meet your needs.

Another alternative for removing boilerplate code is to use aspect-oriented programming (AOP).
We looked at AOP in the previous chapter. You essentially move boilerplate code into an aspect. The
aspect then decorates the method it is applied to. When the method is compiled, the boilerplate code
is then weaved into place. This enables you only to write code that meets the business requirements
inside the method. The aspect applied to the method hides the essential code, but not part of what
the business has asked for. This coding technique is nice and clean, and it works well.

You can also write decorators using the decorator pattern, as you also saw in the previous chapter. The
decorator wraps concrete class operations in such a way that you can add new code without affecting
the expected operation of the code. A simple example would be to wrap the operation in a try/
catch block, as you saw previously in Chapter 8, Addressing Cross-Cutting Concerns.

Refactoring C# Code308

Lost intent

If you can’t easily understand the intent of the source code, then it has lost its intent. One of the biggest
pains for programmers is when you have code scattered in all manner of namespaces instead of neatly
placed in the correct namespace where it should be. This makes it hard to find what you are looking
for and can cause a drop in personal performance that gets picked up by your colleagues and can even
result in disciplinary action where you are forced to explain your drop in productivity.

Note
If you ever find yourself in a position where you are onboarded to a massive code base where
code is incorrectly placed in namespaces and classes, making it hard to understand and follow
the code, then it is best to speak out and bring it to the manager’s attention as technical debt.

The first thing to do is look at the namespace and the class name. These should indicate the purpose
of the class. Then, check the contents of the class, and look for code that looks out of place. Once you
have identified such code, refactor the code and place it in the right location.

The next thing to do is to look at each of the methods. Are they only doing one thing well or doing
multiple things not so well? If yes, then refactor them. For large methods, look for code that can be
extracted into a method. Aim to make the code of the class read like a book. Keep refactoring the
code until the intent is clear, and only what is in the class needs to be in the class.

Don’t forget to put the tools to work that you learned how to use in Chapter 10, Using Tools to Improve
Code Quality. The mutation of variables is the code smell we will look at next.

The mutation of variables

The mutation of variables means they are hard to understand and reason about. This makes them
difficult to refactor.

A mutable variable gets changed multiple times by different operations. This makes the reasoning of
why the value is higher, significantly more difficult. Not only that but because the variable is mutating
from different operations, this makes it difficult to extract sections of code into other small and more
readable methods. Mutable variables can also require more checking, which adds complexity to the code.

Note
When you have multiple places that mutate a variable, you can be certain that your code is not
thread-safe. This can lead to unpredictable behavior during testing and at runtime.

Application-level code smells 309

Look to refactor small sections of code by extracting them out to methods. If there is a lot of
branching and looping, see if there is an easier way to do things to remove the complexity. If you are
using multiple out values, consider returning an object or tuple. Aim to remove the mutability of
the variable to make it easier to reason about and know why it is the value that it is, and from where
it is getting set. Remember that the smaller the method that holds a variable, the easier it will be to
determine where the variable is getting set, and why.

Look at the following example:

[InstrumentationAspect]
public class Mutant
{
 public int IntegerSquaredSum(List<int> integers)
 {
 var squaredSum = 0;
 foreach (var integer in integers)
 {
 squaredSum += integer * integer;
 }
 return squaredSum;
 }
}

The method takes a list of integers. Then, it loops through the integers, squares them, and adds them
to the squaredSum variable, which is returned when the method exits. Notice the iterations and the
fact that the local variable is getting updated in each iteration. We can improve on this using LINQ.
The following code shows the improved, refactored version:

public class Function
{
 [InstrumentationAspect]
 public int IntegerSquaredSum(List<int> integers)
 {
 return integers.Sum(integer => integer * integer);
 }
}

In this version, AsParallel() allows the LINQ query to be processed in parallel, taking advantage
of multiple cores and potentially improving performance. However, keep in mind that not all operations
benefit from parallelization, and it’s essential to consider the nature of the computation and the size
of the input data.

Refactoring C# Code310

Also, note that this change assumes that the InstrumentationAspect aspect and the surrounding
context are thread-safe. If there are other shared resources or stateful operations within the aspect or
the calling code, additional synchronization mechanisms may be necessary to ensure overall thread
safety. Compile and run the program; you will see the following:

Figure 11.1: Output shown by both versions of the code

Both versions of the code produce the same output.

You will have noticed that both versions of the code have [InstrumentationAspect] applied
to them. We added this aspect to our reusable library in Chapter 8, Addressing Cross-Cutting Concerns.
When you run the code, you will find a Logs folder in the Debug folder. Open the Profile.
log file in Notepad; you will see the following output:

Method: IntegerSquaredSum, Start Time: 01/07/2020 11:41:43
Method: IntegerSquaredSum, Stop Time: 01/07/2020 11:41:43, Duration:
00:00:00.0005489
Method: IntegerSquaredSum, Start Time: 01/07/2020 11:41:43
Method: IntegerSquaredSum, Stop Time: 01/07/2020 11:41:43, Duration:
00:00:00.0000027

Figure 11.2: The contents of a profile log

The output shows that the ProblemCode.IntegerSquaredSum() method was the
slowest version, taking 548.9 nanoseconds to run. On the other hand, the RefactoredCode.
IntegerSquaredSum() method was much faster, taking only 2.7 nanoseconds to run.

By refactoring the loop to use LINQ, we avoided mutating a local variable. We also reduced the time
it took to process the calculation by 546.2 nanoseconds. Such a small improvement is not noticeable
to the human eye. But if you perform such calculations on big data, then you will experience a
noticeable difference.

Note
When performing benchmarking, you need to run the same code multiple times. A good library to
use when benchmarking your code is BenchmarkDotNet: https://benchmarkdotnet.
org/.

Now, let’s discuss the oddball solution.

https://benchmarkdotnet.org/
https://benchmarkdotnet.org/

Application-level code smells 311

The oddball solution

When you see a problem that’s been solved differently throughout the source code, this is known
as an oddball solution. This can happen because of different programmers having their own style
of programming, and no standards being put in place. It can also happen through ignorance of the
system, in that the programmer does not realize a solution already exists.

A way to refactor oddball solutions is to write a new class that encompasses the behavior that is being
repeated in different ways. Add the behavior to the class in the cleanest way that is the most performant.
Then, replace the oddball solutions with the newly refactored behavior.

You can also unite different system interfaces using the adapter pattern:

Figure 11.3: Apapter pattern

The Target class is the domain-specific interface that is used by Client. An existing interface that
needs adapting is called Adaptee. The Adapter class adapts the Adaptee class to the Target class.
Finally, the Client class communicates objects that conform to the Target interface. Let’s implement
the adapter pattern. Add a new class called Adaptee:

public class Adaptee
{
 public void AdapteeOperation()
 {
 Console.WriteLine($”AdapteeOperation() has just executed.”);
 }
}

Refactoring C# Code312

The Adaptee class is very simple – it contains a method called AdapteeOperation() that prints
out a message to the console. Now, add the Target class:

public class Target
{
 public virtual void Operation()
 {
 Console.WriteLine(“Target.Operation() has executed.”);
 }
}

The Target class is also very simple and contains a virtual method called Operation() that prints out
a message to the console. Now, we’ll add the Adapter class, which wires Target and Adaptee together:

public class Adapter : Target
{
 private readonly Adaptee _adaptee = new Adaptee();

 public override void Operation()
 {
 _adaptee.AdapteeOperation();
 }
}

The Adapter class inherits the Target class. Then, we create a member variable to
hold our Adaptee object and initialize it. After, we have a single method, which is the
overridden Operation() method of the Target class. Finally, we will add our Client class:

 public class Client
 {
 public void Operation()
 {
 Target target = new Adapter();
 target.Operation();
 }
 }

The Client class has a single method called Operation(). This method creates a new Adapter object
and assigns it to a Target variable. Then, it calls the Operation() method on the Target variable. If
you call a new Client().Operation() method and run the code, you will see the following output:

Fugure 11.4: Adaptee code console out

Application-level code smells 313

As you can see, the method that gets executed is called Adaptee.AdapteeOperation() . Now
that you have successfully learned how to implement the adapter pattern to solve oddball solutions,
we will look at shotgun surgery.

Shotgun surgery

Making a single change that requires making changes to multiple classes is known as shotgun
surgery. This can sometimes be down to excessive refactoring of code due to divergent changes being
encountered. This code smell increases the propensity for introducing bugs such as those caused by
a missed chance. You also increase the possibility of merge conflicts since the code needs to change
in so many areas that programmers end up stepping on each other’s toes. The code is so convoluted
that it induces cognitive overload in programmers. This results in new programmers having a steep
learning curve because of the nature of the software.

The version control history will provide a history of the changes that have been made to the software over
time. This can help you identify all the areas that are changed every time a new piece of functionality is
added or when a bug is encountered. Once these areas have been identified, you can look to move the
changes to a more localized area of the code base. This way, when a change is required, you only have to
focus on one area of the program and not many areas. This makes maintaining the project a lot easier.

Duplicate code is a good candidate for refactoring into a single class that is appropriately named, and
that is placed in the correct namespace. Also, consider all the different layers of your application. Are
they really necessary? Can things be simplified? In a database-driven application, is it really necessary
to have DTOs, DAOs, domain objects, and the like? Could database access be simplified in any way?
Architecture must be flexible. DTOs are often necessary, but we don’t always need them. So, use
DTOs when they are needed, and avoid them when they’re not needed. These are just some ideas for
reducing the size of the code base, and thus reducing the number of areas that must be modified to
effect a change.

Other things to look at are the level of coupling and cohesion. Coupling needs to be kept to an absolute
minimum. One way to accomplish this is to inject dependencies via constructors, properties, and
methods. The injected dependencies would be of a specific interface type. Let’s code a simple example.
Add an interface called IService:

public interface IService
{
 void Operation();
}

The interface contains a single method called Operation(). Now, add a class called Dependency that
implements IService:

public class Dependency : IService
{

Refactoring C# Code314

 public void Operation()
 {
 Console.WriteLine(“Dependency.Operation() has executed.”);
 }
}

The Dependency class implements the IService interface. In the Operation() method, a
message is printed to the console. Now, let’s add the LooselyCoupled class:

public class LooselyCoupled
{
 private readonly IService _service;

 public LooselyCoupled(IService service)
 {
 _service = service;
 }

 public void DoWork()
 {
 _service.Operation();
 }
}

As you can see, the constructor takes a type of IService and stores it in a member variable.
The call to DoWork() calls the Operation() method within the IService type.
The LooselyCoupled class is just that loosely coupled, and it is easy to test.

By reducing coupling, you make classes easier to test. By removing code that does not belong in a class
and placing it where it does belong, you improve the readability, maintainability, and extensibility of
the application. You lessen the learning curve for anyone coming on board, and there is less chance
of introducing bugs when you perform maintenance or new development.

Now, let’s have a look at solution sprawl.

Solution sprawl

The single responsibility that is implemented within different methods, classes, and even libraries
suffers from solution sprawl. This can make code hard to read and understand. The result is that code
becomes harder to maintain and extend.

To fix the problem, move the implementation of the single responsibility into the same class. This way,
the code is in just one location and does what it needs to. This makes code easy to read and understand.
The result is that the code can be easily maintained and extended.

Class-level code smells 315

Uncontrolled side effects

Uncontrolled side effects are those issues that rear their ugly heads in production because the quality
assurance tests are unable to capture them. When you encounter these problems, the only option you
have is to refactor the code so that it is fully testable and variables can be viewed during debugging
to make sure they are set appropriately.

Suppose you have a method called ProcessData that is supposed to transform a given dataset.
However, due to uncontrolled side effects, this method also modifies a global variable or state outside
its context. This can lead to unintended and unpredictable results, especially when the method is called
in different parts of the program.

To address uncontrolled side effects, it’s generally recommended to design functions and methods
to be pure and avoid modifying external state. Encapsulation, immutability, and carefully managing
shared resources can help prevent unintended consequences of side effects in a program.

That concludes our look at application-level code smells. Now, we will move on and look at class-level
code smells.

Class-level code smells
Class-level code smells are localized problems with the class in question. The kinds of problems that
can plague a class are things such as cyclomatic complexity and depth of inheritance, high coupling,
and low cohesion. Your aim when writing a class is to keep it small and functional. The methods in
the class should be there, and they should be small. Only do what needs to be done in the class – no
more, no less. Work to remove class dependency and make your classes testable. Remove code that
should be placed elsewhere to where it belongs. In this section, we’ll address class-level code smells
and how to refactor them, starting with cyclomatic complexity.

Cyclomatic complexity

When a class has a large number of branches and loops, it has an increased cyclomatic complexity.
Ideally, the code should have a cyclomatic complexity value of between 1 and 10. Such code is simple
and without risks. Code with a cyclomatic complexity of 11-20 is complex but low risk. When the
cyclomatic complexity of the code is between 21-50, then the code requires attention as it is too
complex and poses a medium risk to your project. And if the code has a cyclomatic complexity of
more than 50, then such code is high risk and is not testable. A piece of code that has a value above
50 must be refactored immediately.

The goal of refactoring is to get the cyclomatic value down to between 1-10. Start by
replacing switch statements followed by if expressions.

Refactoring C# Code316

Replacing switch statements with the factory pattern

In this section, you will learn how to replace a switch statement with the factory pattern. First, we
will need a Report enum:

[Flags]
public enum Report
{
 StaffShiftPattern,
 EndofMonthSalaryRun,
 HrStarters,
 HrLeavers,
 EndofMonthSalesFigures,
 YearToDateSalesFigures
}

The [Flags] attribute enables us to extract the name of the enum. The Report enum provides a
list of reports. Now, let’s add our switch statement:

public void RunReport(Report report)
{
 switch (report)
 {
 case Report.EndofMonthSalaryRun:
 Console.WriteLine(“Running End of Month Salary Run
Report.”);
 break;
 case Report.EndofMonthSalesFigures:
 Console.WriteLine(“Running End of Month Sales Figures
Report.”);
 break;
 case Report.HrLeavers:
 Console.WriteLine(“Running HR Leavers Report.”);
 break;
 case Report.HrStarters:
 Console.WriteLine(“Running HR Starters Report.”);
 break;
 case Report.StaffShiftPattern:
 Console.WriteLine(“Running Staff Shift Pattern Report.”);
 break;
 case Report.YearToDateSalesFigures:
 Console.WriteLine(“Running Year to Date Sales Figures
Report.”);
 break;
 default:

Class-level code smells 317

 Console.WriteLine(“Report unrecognized.”);
 break;
 }
}

Our method accepts a report and then decides on what report to execute. When I started as a junior
VB6 programmer in 1999, I was responsible for building a report generator from scratch for the likes
of Thomas Cook, ANZ, BNZ, Vodafone, and a few other big companies. There were many reports,
and I was responsible for writing a massive case statement that dwarfed this one. But my system
worked well. However, by today’s standards, there are much better ways of creating this same code
and I would do things very differently.

Let’s use the factory method to run our reports without using a switch statement. Add a file
called IreportFactory, as shown here:

public interface IReportFactory
{
 void Run();
}

The IReportFactory interface only has one method, called Run(). This method will be
used by the implementing classes to run their reports. We’ll only add one report class,
called StaffShiftPatternReport, which implements IReportFactory:

public class StaffShiftPatternReport : IReportFactory
{
 public void Run()
 {
 Console.WriteLine(“Running Staff Shift Pattern Report.”);
 }
}

The StaffShiftPatternReport class implements the IReportFactory interface. The
implemented Run() method prints a message to the screen. Add a report called ReportRunner:

public class ReportRunner
{
 public void RunReport(Report report)
 {
 var reportName = $”CH11_CodeRefactoring.RefactoredCode.
{report}Report, CH11_CodeRefactoring”;
 var factory = Activator.CreateInstance(
 Type.GetType(reportName) ?? throw new
InvalidOperationException(“Invalid operation occurred in
ReportRunner”)
) as IReportFactory;

Refactoring C# Code318

 factory?.Run();
 }
}

The ReportRunner class has a method called RunReport. It accepts a parameter of
the Report type. With Report being an enum with the [Flags] attribute, we can obtain the
name of the report enum. We can use this to build the name of the report. Then, we can use
the Activator class to create an instance of the report. If reportName returns null when
we’re getting the type, InvalidOperationException is thrown. The factory is cast to
the IReportFactory type. Then, we call the Run method on the factory to generate the report.

This code is much better than a very long switch statement. However, we need to know how to
improve the readability of conditional checks within an if statement. We’ll look at that next.

Improving the readability of conditional checks within an if statement

if statements can break the single responsibility and the open/closed principles. Look at the
following example:

public string GetHrReport(string reportName)
{
 if (reportName.Equals(“Staff Joiners Report”))
 return “Staff Joiners Report”;
 else if (reportName.Equals(“Staff Leavers Report”))
 return “Staff Leavers Report”;
 else if (reportName.Equals(“Balance Sheet Report”))
 return “Balance Sheet Report”;
}

The GetReport() class has three responsibilities: the staff joiners report, the staff leavers report, and
the balance sheet report. This breaks the SRP because the method should only be concerned with HR
reports and it is returning HR and finance reports. As far as the open/closed principle is concerned,
every time a new report is needed, we will have to extend this method. Let’s refactor the method so
that we no longer need the if statement. Add a new class called ReportBase:

public abstract class ReportBase
{
 public abstract void Print();
}

The ReportBase class is an abstract class with an abstract Print() method. We will add
the NewStartersReport class, which inherits the ReportBase class:

 internal class NewStartersReport : ReportBase
 {

Class-level code smells 319

 public override void Print()
 {
 Console.WriteLine(“Printing New Starters Report.”);
 }
 }

The NewStartersReport class inherits the ReportBase class and overrides the Print() method.
The Print() method prints a message to the screen. Now, we will add the LeaversReport class,
which is pretty much the same:

 public class LeaversReport : ReportBase
 {
 public override void Print()
 {
 Console.WriteLine(“Printing Leavers Report.”);
 }
 }

LeaversReport inherits the ReportBase class and overrides the Print() method.
The Print() method prints a message to the screen. We can now call the reports as follows:

ReportBase newStarters = new NewStartersReport();
newStarters.Print();

ReportBase leavers = new LeaversReport();
leavers.Print();

Both reports inherit the ReportBase class, so they can be instantiated and assigned to
a ReportBase variable. The Print() method can then be called on the variable, and the
correct Print() method will be executed. The code now adheres to the single responsibility principle
and the open/closed principle.

The next thing we will look at is a divergent change code smells.

Divergent change

When you need to make a change in one location and find yourself having to change many unrelated
methods, then this is known as a divergent change. Divergent changes take place within a single class and
are the result of a poor class structure. Copying and pasting code is another reason this problem arises.

To fix the problem, move the code causing the problem to its own class. If the behavior and state are shared
between classes, then consider implementing inheritance using base classes and subclasses as appropriate.

The benefits of fixing divergent change-related problems include easier maintenance as changes will
be located within a single location. This makes supporting the application a whole lot easier. It also
removes duplicate code from the system, which just so happens to be the next thing we will discuss.

Refactoring C# Code320

Downcasting

When a base class is cast to one of its children, this is known as downcasting. This is a code smell as
the base class should not know about the classes that inherit it. For example, consider the Animal base
class. Any type of animal can inherit the base class. But an animal can only be of one type. For example,
felines are felines and canines are canines. It would be absurd to cast a feline to a canine and vice versa.

It is even more absurd to downcast an animal to one of its subtypes. That would be like saying a
monkey is the same as a camel and is good at transporting humans and cargo long distances through
the desert. This just does not make sense. So, you should never be downcasting. Upcasting various
animals such as monkeys and camels to the Animal type is valid because felines, canines, monkeys,
and camels are all types of animals.

Excessive literal use

When using literals, it is very easy to introduce coding errors. An example would be a spelling mistake
in a string literal. It is best to assign literals to constant variables. String literals should be placed in
resource files for localization, especially if you plan to deploy your software to different locations
around the world.

Feature envy

When a method spends more time processing source code in classes other than the one that it is in,
this is known as feature envy. We will see an example of this in our Authorization class. But
before we do, let’s have a look at our Authentication class:

public class Authentication
{
 private bool _isAuthenticated = false;

 public void Login(ICredentials credentials)
 {
 // Checking of credentials omitted for brevity.
 _isAuthenticated = true;
 }

 public void Logout()
 {
 _isAuthenticated = false;
 }

 public bool IsAuthenticated()
 {

Class-level code smells 321

 return _isAuthenticated;
 }
}

Our Authentication class is responsible for logging people in and out, as well as identifying
whether they are authenticated or not. Let’s add our Authorization class:

public class Authorization
{
 private Authentication _authentication;

 public Authorization(Authentication authentication)
 {
 _authentication = authentication;
 }

 public void Login(ICredentials credentials)
 {
 _authentication.Login(credentials);
 }

 public void Logout()
 {
 _authentication.Logout();
 }

 public bool IsAuthenticated()
 {
 return _authentication.IsAuthenticated();
 }

 public bool IsAuthorized(string role)
 {
 // Dummy example. You would check user is in role.
 return IsAuthenticated && role.Contains(“Administrator”);
 }
}

As you can see, our Authorization class is doing more than it is supposed to. There is one method
that validates whether the user is authorized to carry a role. The role that’s passed in is checked to
see whether it is the administrator role. If it is, then the person is authorized. But if the role is not the
administrator role, then the person is not authorized.

Refactoring C# Code322

However, if you look at the other methods, they are doing no more than calling the same methods
in the Authentication class. So, in the context of this class, the authentication methods are an
example of feature envy. Let’s remove the feature envy from the Authorization class:

public class Authorization
{
 private ProblemCode.Authentication _authentication;

 public Authorization(ProblemCode.Authentication authentication)
 {
 _authentication = authentication;
 }

 public bool IsAuthorized(string role)
 {
 return _authentication.IsAuthenticated() && role.
Contains(“Administrator”);
 }
}

You will see that the Authorization class is a lot smaller now, and only does what it needs to.
There is no longer any feature envy.

Next up, we will look at an inappropriate intimacy code smell.

Inappropriate intimacy

A class engages in inappropriate intimacy when it relies on the implementation details held in a separate
class. Does the class that has this reliance need to exist? Can it be merged with the class that it relies
on? Or is there shared functionality that is better off being extracted into its own class?

Classes should not rely on each other as this causes coupling, and it can also affect cohesion. A class
should ideally be self-contained, and classes should know as little about each other as possible.

Indecent exposure

When a class reveals its internal details, this is known as indecent exposure. This breaks the OOP
principle of encapsulation. Only that which should be public should be public. All other implementations
that don’t need to be public should be hidden by using the appropriate access modifiers.

Data values should not be public. They should be private, and they should only be modifiable via
constructors, methods, and properties. They should also only be retrievable via properties.

Class-level code smells 323

The large class (the God object)

The large class, also known as the God object, is all things to all parts of the system. It is a large,
unwieldy class that simply does far too much. When you attempt to read the object, the intent of the
code may be clear when you read the class name and see what namespace it is in, but then when you
come to look at the code, the intent of the code can become lost.

A well-written class should have the name of its intent and should be placed in the appropriate namespace.
The contents of the class should follow the company coding standards. Methods should be kept as small
as possible, and method parameters should be kept to the absolute bare minimum. Only the methods
that belong in the class should be in the class. Member variables, properties, and methods that don’t
belong in the class should be removed and placed in the correct files in the correct namespace.

To keep classes small and focused, don’t inherit classes if there is no need. If there is a class that has
five methods, and you will only ever use one of them, is it possible to move that method out into its
own reusable class? Remember the single responsibility principle. A class should only have a single
responsibility. For example, a file class should only handle operations and behaviors associated with
files. A file class should not be performing database operations. You get the idea.

When writing a class, you should aim to make it as small, clean, and readable as you can.

The lazy class (the freeloader and the lazy object)

A freeloading class is one that hardly does anything to be useful. When you encounter such classes,
you can merge their contents with other classes that have the same kind of intentions.

You can also attempt to collapse the inheritance hierarchy. Remember that the ideal depth of inheritance
is 1. So, if your classes have a larger value for their depth of inheritance, then they are good candidates for
moving back up the inheritance tree. You may also want to consider using inline classes for really small classes.

The middleman class

The middleman class does no more than delegate functionality to other objects. In situations like this,
you can get rid of the middleman and deal with the objects that carry out the responsibility directly.

Also, remember that you need to keep the depth of inheritance down. So, if you cannot get rid of
the class, look to merge it with existing classes. Look at the overall design of that area of code. Could
it all be refactored in some way to reduce the amount of code and the number of different classes?

The orphan class of variables and constants

It is not good practice to have a lone class that holds variables and constants for multiple different parts
of the application. When you encounter such a situation, it can be hard for the variables to have any
real meaning and their context can be lost. It is better to move constants and variables to areas that
use them. If constants and variables will be used by multiple classes, then they should be assigned to
a file within the root of the namespace they will be used in.

Refactoring C# Code324

Here are some issues associated with having orphan classes:

•	 Lack of cohesion: Orphan classes may lack a clear, focused responsibility or purpose. When a
class contains variables and constants that are used in various parts of a system, it may become
a dumping ground for unrelated functionalities. This lack of cohesion can make the code base
harder to understand and maintain.

•	 Global state: Classes with shared variables and constants can introduce global state, making
it challenging to reason about the state of the system at any given point. Changes to the
state in one part of the system may have unintended consequences in other parts, leading to
difficult-to-trace bugs.

•	 Dependency issues: If multiple components of a system depend on a class with shared variables
and constants, changes to that class can have a cascading effect on various parts of the code base.
This can increase the risk of introducing bugs and make the system more fragile to changes.

•	 Scoping and encapsulation: Orphan classes might not adhere to proper scoping and encapsulation
principles. Ideally, variables and constants should be defined in the smallest scope possible, and their
visibility should be limited to the parts of the system that genuinely need them. Orphan classes may
violate these principles, leading to potential issues related to code maintainability and modularity.

•	 Maintenance challenges: As the code base evolves, maintaining and extending functionality
in orphan classes can become challenging. Developers may need to sift through unrelated code
to understand the purpose and impact of changes, leading to inefficiencies and an increased
likelihood of introducing errors.

To address these issues, it’s generally advisable to follow good software design principles, such as
creating classes with well-defined responsibilities, adhering to encapsulation, minimizing global state,
and promoting modular and maintainable code. If variables and constants are used in multiple parts
of the system, consider organizing them in a way that aligns with the structure and responsibilities of
the system components. This can contribute to a more coherent and maintainable code base.

Primitive obsession

Primitive obsession is a code smell that occurs when primitive data types (such as strings, integers,
and others) are used to represent domain concepts, instead of creating dedicated classes or structures
to encapsulate that logic. This can lead to code that is harder to understand, maintain, and extend.
Let’s consider an example by using CreditCardNumber, which demonstrates primitive obsession:

public class PaymentProcessor
{
 // Primitive obsession example
 public bool ProcessPayment(string creditCardNumber, decimal
amount)
 {
 // Validate credit card number format

Class-level code smells 325

 if (!IsValidCreditCardNumber(creditCardNumber))
 {
 Console.WriteLine(“Invalid credit card number format.”);
 return false;
 }
 // Perform payment processing logic
 Console.WriteLine($”Processing payment of {amount:C} using
credit card ending in {GetLastFourDigits(creditCardNumber)}.”);
 // More payment processing code...
 return true;
 }
 // Primitive obsession: Credit card number validation logic
 private bool IsValidCreditCardNumber(string creditCardNumber)
 {
 // Simplified credit card number validation logic
 // Check length, format, etc.
 return !string.IsNullOrEmpty(creditCardNumber) &&
creditCardNumber.Length == 16 && creditCardNumber.All(char.IsDigit);
 }
 // Primitive obsession: Extracting last four digits from a credit
card number
 private string GetLastFourDigits(string creditCardNumber)
 {
 return creditCardNumber.Length >= 4 ? creditCardNumber.
Substring(creditCardNumber.Length - 4) : string.Empty;
 }
}

In this example, we have the following:

1.	 Primitive obsession: creditCardNumber is represented as a primitive string. While it’s
a valid representation, it lacks the encapsulation and validation logic that could be associated
with a more specialized type.

2.	 Code smell: The ProcessPayment method deals with validating the credit card number
and extracting the last four digits directly. This logic could be better encapsulated within a
dedicated CreditCard class.

•	 Validation logic: The validation logic for the credit card number is scattered within the
ProcessPayment method, making it harder to reuse or modify independently.

A better approach to address the primitive obsession code smell would be to create a dedicated
CreditCard class that encapsulates the credit card-related logic:

public class CreditCard
{

Refactoring C# Code326

 public string Number { get; }
 public CreditCard(string number)
 {
 if (!IsValidCreditCardNumber(number))
 {
 throw new ArgumentException(“Invalid credit card number
format.”, nameof(number));
 }
 Number = number;
 }
 public string LastFourDigits => Number.Length >= 4 ? Number.
Substring(Number.Length - 4) : string.Empty;
 private bool IsValidCreditCardNumber(string number)
 {
 // Credit card number validation logic
 return !string.IsNullOrEmpty(number) && number.Length == 16 &&
number.All(char.IsDigit);
 }
}
public class PaymentProcessor
{
 public bool ProcessPayment(CreditCard creditCard, decimal amount)
 {
 Console.WriteLine($”Processing payment of {amount:C} using
credit card ending in {creditCard.LastFourDigits}.”);
 // More payment processing code...
 return true;
 }
}

In this improved version, the CreditCard class encapsulates the validation logic, and the
ProcessPayment method of PaymentProcessor now accepts a CreditCard instance,
making the code more maintainable, modular, and aligned with object-oriented design principles.

Refused bequest

When a class inherits from another class but does not use all its methods, this is known as refused
bequest. A common reason for this happening is when the subclass is completely different from
the base class. For example, a building base class is used by different building types, but then
a car object inherits building because it has properties and methods to do with windows and
doors. This is wrong.

When you encounter this, consider whether a base class is necessary. If it is, then create one and
inherit from it. Otherwise, add the functionality to the class that was inherited from the wrong type.

Method-level smells 327

Speculative generality

A class that is programmed with functionality that is not needed now but may be needed in the future
suffers from speculative generality. Such code is dead code and adds maintenance overhead as well as
code bloat. It is best to remove these classes when you see them.

Tell, Don’t Ask

The Tell, Don’t Ask software principle informs us, as programmers, that we are to bundle data with
the methods that will operate on that data. Our objects must not ask for data and then operate on it!
They must tell the logic of an object to perform a specific task on that object’s data.

If you find objects that contain logic and that ask other objects for data to carry out their operations,
then combine the logic and the data into a single class.

Temporary fields

Temporary fields are member variables that are not needed for an object’s entire lifetime.

You can perform refactoring by removing the temporary fields and the methods that operate upon
them to their own class. You will end up with clearer code that is well organized.

Method-level smells
Method-level code smells are problems within the method itself. Methods are the workhorses that either
make the software function well or poorly. They should be well organized and do only what they are
expected to do – no more and no less. It is important to know about the kinds of problems and issues
that can arise because of poorly constructed methods. We will address what to look out for in terms of
method-level code smells, and what we can do to address them. We’ll start with the black sheep method.

The black sheep method

Out of all the methods in the class, a black sheep method will be noticeably different. When you
encounter a black sheep method, you must consider the method objectively. What is its name? What is
the method’s intent? When you have answered these questions, you can decide to remove the method
and place it where it truly belongs.

Cyclomatic complexity

When a method has too many loops and branches, this is known as cyclomatic complexity. This
code smell is also a class-level code smell; we saw how we can reduce the problems with branching
when we looked at replacing switch and if statements. As for loops, they can be replaced with
LINQ statements. LINQ statements have the added benefit of being functional code since LINQ is a
functional query language.

Refactoring C# Code328

Contrived complexity

When a method is unnecessarily complex and can be simplified, this complexity is termed contrived
complexity. Simplify the method to make sure that its contents are human-readable and understandable.
Then, look to refactor the method and reduce its size to the smallest number of lines that is practical.

Dead code

When a method exists but is not used, this is known as dead code. The same goes for constructors,
properties, parameters, and variables. They should be identified and removed.

Note
Visual Studio and other refactoring tools will often inform you of dead code that can be removed.
Different tools may have different keypress combinations to rectify the code, so make sure you
know the commands, such as CTRL +, to boost your productivity. But be careful – sometimes,
they can be wrong.

Excessive data return

When a method returns more data than is needed by each client that calls it, this code smell is known
as excessive data return. Only the data that is required should be returned. If you find that there
are groups of objects with different requirements, then you should maybe consider writing different
methods that appeal to both groups and only return what is necessary to those groups.

Feature envy

A method that has feature envy spends more time accessing data in other objects than it does in its
own object. We saw this in action when we looked at feature envy in the Class-level code smells section.

A method should be kept small, and most of all, its main functionality should be localized to that
method. If it is doing more in other methods than its own, then there is scope for moving some of
the code out of the method and into its own method.

Identifier size

Identifiers can be either too short or too long. Identifiers should be descriptive and succinct. The main
thing to consider when naming variables is their context and location. In a localized loop, a single letter
may be appropriate. But if the identifier is at the class level, then it will need a human-understandable
name to give it context. Avoid using names that lack context, and that are ambiguous or cause confusion.

Method-level smells 329

Inappropriate intimacy

Methods that rely too heavily on implementation details in other methods or classes display inappropriate
intimacy. These methods need to be refactored and possibly even removed. The main thing to bear in
mind is that the methods use the internal fields and methods of another class.

To perform refactoring, you can move the methods and fields to where they need to be used. Alternatively,
you can extract the fields and methods into a class of their own. Inheritance can replace delegation
when the subclass is being intimate with the superclass.

Long lines (God lines)

Long lines of code can be very hard to read and decipher. This makes it difficult for programmers to
debug and refactor such code. Where it is possible, the line can be formatted so that any periods and
any code after a comma appear on a new line. But such code should also be refactored to make it small.

Lazy methods

A lazy method does very little work. It may delegate its work to other methods, and it may simply call
a method on another class that does what it is supposed to. If any of these are the case, then it may
pay to get rid of the methods and place code within the methods where it is needed. You could, for
instance, use an inline function such as a Lambda.

Long methods (God methods)

A long method is a method that has outgrown itself. Such methods may lose their intent and perform
more tasks than they are expected to. You can use the IDE to select parts of the method, and then
select extract method or extract class to move portions of the method to their own method and even
their own class. A method should only be responsible for doing a single task.

Long parameter lists (too many parameters)

Three or more parameters are classed as the long parameter list code smell. You can tackle this problem
by replacing the parameters with a method call. An alternative is to replace the parameters with a
parameter object.

Message chains

A message chain occurs when a method calls an object that calls another object that calls another
object and so on. Previously, you saw how to deal with message chains when we looked at the Law of
Demeter. Message chains break this law as a class should only communicate with its nearest neighbor.
Refactor the classes to move the required state and behavior closer to where it is needed.

Refactoring C# Code330

The middleman method

When all a method does is delegate work out to others to complete, it is a middleman method and
can be refactored and removed. But if there is functionality that can’t be removed, then merge it in
the area that it is being used in.

Oddball solutions

When you see multiple methods doing the same thing but doing it differently, then this is an oddball
solution. Choose the method that best implements the task, and then replace the method calls to the
other methods with calls to the best method. Then, delete the other methods. This will leave only one
method and one way of implementing the task that can be reused.

Speculative generality

A method that is not used anywhere in the code is known as a speculative generality code smell. It is
essentially dead code, and all dead code should be removed from the system. Such code provides a
maintenance overhead and also provides unnecessary code bloat.

Summary
In this chapter, you were introduced to a variety of code smells and how to remove them through
refactoring. We stated that there are application-level code smells, which permeate throughout all the
layers of the application, class-level code smells, which run throughout the class, and method-level
code smells, which affect the individual methods.

First of all, we covered application-level code smells, which consisted of Boolean blindness, combinatorial
explosion, contrived complexity, data clump, deodorant comments, duplicate code, lost intent, mutation
of variables, oddball solutions, shotgun surgery, solution sprawl, and uncontrolled side effects.

We then went on to look at class-level code smells, including cyclomatic complexity, divergent change,
downcasting, excessive literal use, feature envy, inappropriate intimacy, indecent exposure, and the
large object, also known as the God object. We also covered the lazy class, also known as the freeloader
and the lazy object, middleman, orphan classes of variables and constants, primitive obsession, refused
bequest, speculative generality, Tell, Don’t Ask, and temporary fields.

Finally, we moved on to method-level code smells. We discussed black sheep, cyclomatic complexity,
contrived complexity, dead code, feature envy, identifier size, inappropriate intimacy, long lines, also
known as the God lines, the lazy method, the long method, also known as the God method, the long
parameter list, also known as too many parameters, message chains, middleman, oddball solutions,
and speculative generality.

In the next chapter, we will continue looking at code refactoring with the use of ReSharper.

Questions 331

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 What are the three main categories of code smell?

2.	 Name the different types of application-level code smells.

3.	 Name the different types of class-level code smells.

4.	 Name the different types of method-level code smells.

5.	 What kinds of refactoring can you perform to clean up various code smells?

6.	 What is cyclomatic complexity?

7.	 How can we overcome cyclomatic complexity?

8.	 What is contrived complexity?

9.	 How can we overcome contrived complexity?

10.	 What is a combinatorial explosion?

11.	 How do we overcome a combinatorial explosion?

12.	 What should you do when you find deodorant comments?

13.	 If you have bad code but don’t know how to fix it, what should you do?

14.	 Where is a good place to ask questions and get answers when it comes to programming issues?

15.	 In what ways can a long parameter list be reduced?

16.	 How can a large method be refactored?

17.	 What is the maximum length for a clean method?

18.	 Within what range of numbers should your program’s cyclomatic complexity be?

19.	 What is the ideal depth of inheritance value?

20.	 What is speculative generality and what should you do about it?

21.	 If you encounter an oddball solution, what course of action should you take?

22.	 What refactorings would you perform if you encountered a temporary field?

23.	 What is a data clump, and what should you do about it?

24.	 Explain the refused bequest code smell.

25.	 What law do message chains break?

26.	 How should message chains be refactored?

27.	 What is feature envy?

28.	 How do you remove feature envy?

29.	 What pattern can you use to replace switch statements that return objects?

Refactoring C# Code332

30.	 How can we replace if statements that return objects?

31.	 What is solution sprawl, and what can be done to tackle it?

32.	 Explain the Tell, Don’t Ask principle.

33.	 How does the Tell, Don’t Ask principle get broken?

34.	 What are the symptoms of shotgun surgery, and how should they be addressed?

35.	 Explain lost intent and what can be done about it.

36.	 How can loops be refactored, and what benefits do the refactorings bring?

37.	 What is a divergent change, and how would you go about refactoring it?

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 Refactoring – Improving the Design of Existing Code, by Martin Fowler and Kent Beck

•	 https://refactoring.guru/refactoring: A good site on design patterns and
code smells

•	 https://www.dofactory.com/net/design-patterns: A very good C#-based
site on various design patterns

https://refactoring.guru/refactoring
https://www.dofactory.com/net/design-patterns

12
Functional Programming

Functional programming is a powerful paradigm that offers a different approach to writing code by
treating computation as the evaluation of mathematical functions. In this chapter, we will explore
various aspects of functional programming in C#, showcasing how it can lead to more expressive,
modular, and maintainable code.

We are going to cover the following topics:

•	 Overview of functional programming in C#

•	 First-class functions and Lambda expressions

•	 High-order functions

•	 Immutability and pure functions

•	 Functional composition

•	 Option types and the Maybe monad

•	 Functional error handling

•	 Functional data transformation and pipeline

•	 Lazy evaluation

•	 Pattern matching

•	 Currying and partial application

•	 Concurrency and partial application

By completing this chapter, you will be able to do the following:

•	 Understand functional programming in C#

•	 Apply the functional techniques to your code

Functional Programming334

Technical requirements
To complete this chapter, you will require the following:

•	 Visual Studio

•	 The source code for this chapter: https://github.com/PacktPublishing/Clean-
Code-with-CSharp-Second-Edition/tree/main/CH12

Imperative versus functional programming
Imperative and functional programming are two different programming paradigms that dictate how
you structure your code and solve problems. Let’s explore both paradigms using C# code examples.

Imperative programming

Imperative programming focuses on describing how to perform tasks step by step, just like giving
a series of instructions to a computer. It’s centered around mutable state and using statements to
modify the state directly.

Here’s an example of imperative programming in C#:

using System;
class ImperativeExample
{
    static void Main()
    {
        int sum = 0;

        for (int i = 1; i <= 10; i++)
        {
            sum += i;
        }

        Console.WriteLine("Sum of numbers from 1 to 10: " + sum);
    }
}

In this example, we’re using a for loop to iteratively update the sum variable, which is an example
of imperative programming. We’re telling the computer exactly how to perform the task step by step.

Functional programming

Functional programming, on the other hand, treats computation as the evaluation of mathematical functions
and avoids changing state and mutable data. It focuses on immutability and the use of higher-order functions.

https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH12
https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH12

Imperative versus functional programming 335

Here’s an example of functional programming in C#:

using System;
using System.Linq;
class FunctionalExample
{
    static void Main()
    {
        var numbers = Enumerable.Range(1, 10);
        int sum = numbers.Sum();

        Console.WriteLine("Sum of numbers from 1 to 10: " + sum);
    }
}

In this example, we’re using the LINQ extension Sum method on a sequence of numbers. The functional
approach involves using higher-order functions (functions that take other functions as arguments or
return functions) and avoiding mutable state.

In the context of object-oriented programming (OOP) and C#, the term “state” refers to the current
values of the attributes or properties of an object. An object’s state represents the data it holds at any
given moment. Let’s break down the concept of state and how it relates to classes and immutable
structs/records in C#.

State in classes

In C#, classes are a fundamental building block of OOP. A class is a blueprint for creating objects,
and objects created from the same class share the same structure and behavior. The state of an object
instantiated from a class is determined by the values of its fields and properties.

Here’s a simple example:

public class Person
{
    private string name;
    private int age;
    public string Name { get; set; }
    public int Age { get; set; }
}

In this example, the Person class has two fields (name and age) that contribute to the state of an
instance of the class. You can create objects of this class and set their state using the properties:

Person person1 = new Person();
person1.Name = "John";
person1.Age = 30;

Functional Programming336

State in immutable structs/records

In contrast to classes, structs and records in C# are value types and are often used to represent immutable
data structures. Immutable means that the state of an instance cannot be changed after it is created.
Instead of modifying the state, you create new instances with the desired state.

Here’s an example using an immutable record:

public record ImmutablePerson(string Name, int Age);

In this case, the ImmutablePerson record has two properties (Name and Age). Since records are
immutable, you cannot change the values once an instance is created. Instead, you must create a new
instance with the updated state:

ImmutablePerson person1 = new ImmutablePerson("John", 30);
ImmutablePerson person2 = person1 with { Age = 31 };

In the second line, a new instance, person2, is created with the same Name but a different Age.
The original instance, person1, remains unchanged.

Understanding and managing the state of objects is crucial in OOP, and choosing between classes
and immutable structs/records depends on the specific requirements of your application. Immutable
types can offer benefits in terms of safety, concurrency, and reasoning about code but may involve
more memory allocation due to the creation of new instances. Classes, on the other hand, allow for
mutability but require careful management to avoid unintended side effects.

Key differences

Let’s look at the key differences between these approaches:

•	 State and mutability:

	� Imperative: It focuses on changing state and mutable data directly

	� Functional: It emphasizes immutability and avoids changing state directly

•	 Control flow:

	� Imperative: It relies on explicit control flow statements such as loops and conditionals

	� Functional: It leverages higher-order functions and expressions for control flow

•	 Side effects:

	� Imperative: It can lead to more side effects due to mutable state changes

	� Functional: It minimizes side effects, making it easier to reason about code

Imperative versus functional programming 337

•	 Code style:

	� Imperative: It often involves more explicit step-by-step instructions

	� Functional: It focuses on composing functions to transform data

The following table compares imperative and functional programming:

Feature Imperative Programming Functional Programming
Paradigm Uses statements to change a

program’s state
Focuses on declaring functions and avoiding
state changes

Mutability Emphasizes mutable state
and variables

Emphasizes immutability and avoids
mutable state

Control
flow

Relies on explicit control flow
structures (loops, conditionals)

Uses higher-order functions, recursion, and
expressions for control flow

Side
effects

Commonly involves side effects
and changes to the external state

Avoids side effects and aims for pure functions
without side effects

State
management

Uses objects and classes to
manage state

Relies on immutable data structures and avoids
shared mutable state

Functions May have side effects and
don’t necessarily adhere to
mathematical functions

Emphasizes pure functions with no side effects
following mathematical functions

Coding
style

Tends to be more procedural
and imperative

Tends to be more declarative
and expression-oriented

Error
handling

Often uses exception handling
for error management

Encourages the use of monads or other
functional constructs for error handling

Parallelism May require manual management
of concurrency and parallelism

Facilitates parallelism through immutability
and pure functions

Readability Code may be more verbose with
explicit state changes

Code is often more concise and readable due to
the absence of mutable state and side effects

Table 12.1: Imperative versus functional programming

Both programming paradigms have their merits and are suitable for different scenarios. It’s common to
use a mix of both paradigms depending on the problem at hand and the preferences of the developer.

Functional Programming338

Overview of functional programming in C#
Functional programming in C# is a programming paradigm that emphasizes writing code in a declarative
and immutable manner, treating computation as the evaluation of mathematical functions. In this
approach, functions are first-class citizens, which means they can be assigned to variables, passed as
arguments to other functions, and returned as results from functions. The central idea is to model
computations as the composition of pure functions, where the output solely depends on the input,
without any side effects or mutable state.

Here are some key characteristics of functional programming in C#:

•	 Immutability: In functional programming, data is treated as immutable, meaning once created,
it cannot be changed. Instead of modifying existing data, functional programs create new data
with updated values, which helps in maintaining a more predictable and reliable state.

•	 Pure functions: Pure functions are functions that produce the same output for a given set of inputs
and have no side effects. This property makes them easy to reason about and test. They don’t modify
the external state or interact with the outside world, making them isolated and independent.

•	 Higher-order functions: C# supports higher-order functions, which are functions that can take
other functions as arguments or return functions as results. This enables powerful abstractions
and code reuse, promoting modularity and composability.

•	 Lambda expressions: Lambda expressions are concise and anonymous functions that facilitate
writing functional code in C#. They allow developers to define simple functions directly at the
call site without the need for explicit method declarations.

•	 Option types and the Maybe monad: Functional programming in C# often involves using
option types, such as Nullable<T>, or custom types such as Option<T>, to handle the
absence of a value without resorting to null references. The Maybe monad is frequently employed
to handle computations with possible null results elegantly.

•	 Functional data transformation and pipelines: Functional programming encourages transforming
data using pure functions and building pipelines, which are sequences of operations, to process
data from one step to another. This enables the creation of expressive and concise code.

•	 Pattern matching: C# 7.0 and later versions support pattern matching, a feature that’s common in
functional programming languages. Pattern matching allows developers to match the structure of
data and perform different operations based on patterns, leading to more readable and efficient code.

•	 Concurrency and parallelism: Functional programming facilitates writing concurrent and
parallel code with less contention and complexity. By avoiding shared mutable state, functional
programs can often achieve better scalability and safety in multi-threaded scenarios.

First-class functions and Lambda expressions 339

Functional programming in C# is not about eliminating imperative programming altogether but
rather about utilizing the functional paradigm in appropriate situations to improve code quality,
maintainability, and expressiveness. By embracing these functional techniques, C# developers can
design more robust, scalable, and maintainable applications while taking advantage of the language’s
expressive power and extensive libraries.

First-class functions and Lambda expressions
In C#, functions are considered first-class citizens, which means they can be treated just like any
other data type, such as integers or strings. This enables functions to be assigned to variables, passed
as arguments to other functions, and returned as results from functions. In essence, functions can be
manipulated and used as data, making them a powerful tool for abstraction and code reuse.

Lambda expressions in C#
Lambda expressions are a concise way to define anonymous functions in C#. They provide a compact
syntax for creating delegates or expression trees. A Lambda expression consists of input parameters (if
any), the Lambda operator (=>), and the function body. The function body can be a single expression
or a block of statements enclosed in curly braces.

The general syntax of a Lambda expression in C# is as follows:

(parameters) => expression

Here’s an example of a simple Lambda expression that adds two numbers:

Func<int, int, int> add = (a, b) => a + b;

In this example, we define a Lambda expression that takes two integers (a and b) as input parameters
and returns their sum (a + b). Func<int, int, int> is a delegate type that represents a
function that takes two integers as input and returns an integer as output. We assign our Lambda
expression to a variable called add, and we can now use this variable as if it were a regular function.

Lambda expressions are commonly used when working with higher-order functions or LINQ in C#.
For instance, they can be used in LINQ’s Where, Select, OrderBy, and other methods to specify
filtering, projection, and ordering operations succinctly.

Here’s an example of using a Lambda expression with LINQ’s Where method:

List<int> numbers = new List<int> { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
List<int> evenNumbers = numbers.Where(num => num % 2 == 0).ToList();

In this example, we use a Lambda expression within the Where method to filter out the even numbers
from the numbers list, and the result is stored in the evenNumbers list.

Functional Programming340

Lambda expressions simplify the syntax of defining small, single-purpose functions, and they are
particularly valuable in functional programming as they allow functions to be created directly at
the call site without the need for explicit method declarations. They enhance code readability and
maintainability, especially when working with collections and LINQ queries in C#.

Higher-order functions
In C#, a higher-order function is a function that takes one or more functions as arguments or returns
a function as its result. This concept is an essential aspect of functional programming and enables
powerful abstractions and code reusability.

There are two main types of higher-order functions in C#:

•	 Functions that take other functions as arguments: These higher-order functions accept one
or more functions as parameters. They can then apply those functions to data or invoke them
within their own implementation. By passing different functions as arguments, the higher-
order function can be customized to perform various operations without needing separate
implementations for each case.

In functional programming, one of the key principles is immutability. In C#, you can use LINQ
to achieve a non-mutating state. Here’s an example of a higher-order function that takes functions
as arguments and uses LINQ without violating the non-mutating state concept:

using System;
using System.Collections.Generic;
using System.Linq;
class Program
{
    static void Main()
    {
        // Example usage
        List<int> numbers = new List<int> { 1, 2, 3, 4, 5 };

        // High-order function: TransformList
        var squaredNumbers = TransformList(numbers, x => x * x);
        // Print the original and transformed lists
        Console.WriteLine("Original numbers: " + string.Join(",
", numbers));
        Console.WriteLine("Squared numbers: " + string.Join(",
", squaredNumbers));
    }
    // High-order function that applies a transformation to each
element of a list
    static List<TOutput> TransformList<TInput,
TOutput>(List<TInput> inputList, Func<TInput, TOutput>

Higher-order functions 341

transformFunc)
    {
        // Using LINQ to project each element of the input list
using the provided transformation function
        return inputList.Select(transformFunc).ToList();
    }
}

In this example, the TransformList function is a higher-order function that takes a list
and a transformation function as arguments. It uses LINQ’s Select method to project each
element of the input list using the provided transformation function and then converts the
result into a list.

The key point here is that the original list (numbers) remains unchanged, and a new list
(squaredNumbers) is created with the transformed values. This adheres to the non-mutating
state concept in functional programming.

•	 Functions that return functions: These higher-order functions create and return new functions
as their result. The returned functions can be customized or parameterized based on the input
arguments to the higher-order function. This technique is useful for creating specialized
functions on the fly without the need to explicitly define them beforehand.

Here’s an example of a higher-order function in C# that returns a function:
public static Func<int, int, int> GetMathOperation(string
operation)
{
    switch (operation)
    {
        case "add":
            return (a, b) => a + b;
        case "subtract":
            return (a, b) => a - b;
        case "multiply":
            return (a, b) => a * b;
        case "divide":
            return (a, b) => b != 0 ? a / b : throw new
ArgumentException("Cannot divide by zero.");
        default:
            throw new ArgumentException("Invalid operation.");
    }
}

In this example, GetMathOperation is a higher-order function that takes a string representing
a math operation and returns a function (Func<int, int, int>) accordingly. Depending on
the input string, it returns different Lambda functions that perform the specified math operation.

Functional Programming342

Higher-order functions in C# facilitate code reuse, abstraction, and modularity. They enable developers
to create more flexible and expressive code by parameterizing behavior and promoting separation
of concerns. These functions are commonly used in functional programming paradigms and are
particularly valuable when combined with Lambda expressions and LINQ, allowing for concise and
elegant code that is easier to maintain and understand.

Immutability and pure functions
Immutability refers to the property of an object whose state cannot be changed after it is created. In C#,
this means that once an object is instantiated, its internal state, including the values of its properties,
cannot be modified. Instead of modifying the existing object, any updates or modifications result in
the creation of a new object with the updated values.

Immutability is commonly associated with functional programming in C# and has several benefits:

•	 Predictable behavior: Since immutable objects cannot change state, their behavior remains
consistent throughout the program’s execution, making the code easier to reason about and debug.

•	 Thread safety: Immutable objects are inherently thread-safe since multiple threads cannot
modify their state concurrently. This simplifies concurrent programming and reduces the risk
of data corruption or race conditions.

•	 Caching and optimization: Immutability allows for caching and optimizing objects since their
values remain constant. This can lead to performance improvements in certain scenarios, along
with improved testability due to the lack of a mutable state, which can make tests predictable.

Here’s an example of an immutable record in C#:

Public record Point(int x, int y);

In this example, the Point record is immutable because it has read-only properties, X and Y. Once
a Point object is created, its X and Y values cannot be changed.

A pure function is a function that, given the same input, always produces the same output and has
no side effects. In C#, this means that a pure function doesn’t modify the global state, modify input
parameters, perform I/O operations, or have any observable effect beyond computing the return value.

Pure functions are a fundamental concept in functional programming and have several advantages:

•	 Deterministic behavior: Since pure functions produce the same output for the same input,
they offer deterministic behavior, which is crucial for predictability and testability

•	 Easy testing: Pure functions are easy to test because their behavior is entirely determined by
their inputs, and they do not rely on the external state or resources

•	 Referential transparency: Pure functions exhibit referential transparency, meaning that a
function call can be replaced with its return value without affecting the program’s behavior

Functional composition 343

Here’s an example of a pure function in C#:

public static int PerformOperation(Func<int, int, int> operation, int
a, int b) {
    return operation(a, b);
}

The C# code defines a function, PerformOperation, in the context of functional programming.
It takes a binary operation represented by the Func<int, int, int> delegate, along with two
integers (a and b), and applies the operation, returning the result. The code embraces the functional
programming principle of first-class functions, treating operations as parameters. If the provided
operation adheres to purity principles (the same output for the same input and no side effects), the
PerformOperation function is also considered pure. This design promotes composability and
clarity in functional programming by allowing different operations to be easily passed and applied. By
embracing immutability and pure functions, C# developers can design more maintainable, reliable,
and parallelizable code.

Functional programming techniques encourage the use of immutable data structures and pure
functions whenever possible, promoting better code quality and enabling developers to write robust
and scalable applications.

Functional composition
Functional composition in C# refers to the practice of combining multiple functions to create a new
function. The result of one function becomes the input for another function, allowing developers to
chain and compose functions to perform more complex operations in a concise and declarative manner.
This technique is a core concept in functional programming and enables code reuse and modularity.

There are several ways to achieve functional composition in C#, including using Lambda expressions,
LINQ, and higher-order functions. Let’s explore some examples of functional composition in C#.

Using Lambda expressions

Func<int, int> addOne = x => x + 1;
Func<int, int> doubleValue = x => x * 2;
Func<int, int> composedFunction = x => doubleValue(addOne(x));
int result = composedFunction(5); // result = doubleValue(addOne(5)) =
doubleValue(6) = 12

In this example, we define two simple functions, addOne and doubleValue. Then, we create a
new function called composedFunction, which applies addOne first and then passes the result
to doubleValue. The result variable holds the value that was obtained by composing the
two functions.

Functional Programming344

Using LINQ and extension methods

List<int> numbers = new List<int> { 1, 2, 3, 4, 5 };
IEnumerable<int> transformedNumbers = numbers.Select(x => x +
1).Where(x => x % 2 == 0);

In this example, we use the LINQ Select and Where extension methods to compose two functions
together. The Select method adds 1 to each element in the numbers list and the Where method
filters out the even numbers from the result.

Using higher-order functions

Func<int, int> addOne = x => x + 1;
Func<int, int> doubleValue = x => x * 2;
Func<int, int> ComposeFunctions(Func<int, int> func1, Func<int, int>
func2)
{
    return x => func2(func1(x));
}
Func<int, int> composedFunction = ComposeFunctions(addOne,
doubleValue);
int result = composedFunction(5); // result = doubleValue(addOne(5)) =
doubleValue(6) = 12

In this example, we create a higher-order function, ComposeFunctions, which takes two functions
as arguments and returns a new function that applies the second function to the result of the first
function. We then use this higher-order function to compose addOne and doubleValue.

Functional composition in C# allows developers to build complex behavior by combining simpler
functions in a way that promotes code reuse and clarity. It enhances the readability and maintainability
of code by breaking down complex operations into smaller, composable functions. By leveraging
functional composition techniques, developers can design more expressive and concise code, making
their applications easier to understand and maintain.

Option types and the Maybe monad
Option types and the Maybe monad are concepts that are used in functional programming to handle
the absence of a value or represent a computation that might fail. While C# doesn’t have built-in
support for option types and the Maybe monad, we can implement them using custom classes or
leverage third-party libraries such as LanguageExt and CSharpFunctionalExtensions
to achieve similar functionality.

Option types represent the presence or absence of a value, providing a safe alternative to using null
references. Instead of directly returning null when a value is not found or when an operation fails,
option types allow us to explicitly indicate the absence of a value.

Option types and the Maybe monad 345

Here’s an example of an option type in C#:

public class Option<T>
{
    private readonly T value;

    public bool HasValue { get; }
    public T Value => HasValue ? value : throw new
InvalidOperationException("Option has no value.");

    private Option() => HasValue = false;
    private Option(T value) { HasValue = true; this.value = value; }

    public static Option<T> Some(T value) => new Option<T>(value);
    public static Option<T> None() => new Option<T>();
}

The provided code defines a generic class, Option<T>, that represents an optional value, similar to the
concept of an “option” or “maybe” type in functional programming. This class has two possible states:

•	 Some: This represents a case where the option has a value. It is constructed using the Some
method, which takes a value of the T type.

•	 None: This represents a case where the option has no value. It is constructed using the
None method.

The class also has properties:

•	 HasValue: This indicates whether the option has a value

•	 Value: This returns the value if HasValue is true; otherwise, it throws an InvalidOp-
erationException error

The constructor and properties are designed to ensure that an instance of Option<T> can only be
in one of the two states.

You can achieve similar functionality using C# nullable types, which were introduced in C# 8.0. Here’s
how you might rewrite the code using a nullable type:

public class Option<T>
{
    public T? Value { get; }

    public bool HasValue => Value.HasValue;

    private Option(T? value) => Value = value;

Functional Programming346

    public static Option<T> Some(T value) => new Option<T>(value);
    public static Option<T> None() => new Option<T>(null);
}

In this version, the Value property is of the T? type (nullable type), allowing it to represent both
cases of having a value (HasValue is true) and having no value (Value is null). The Some
method sets the value, and the None method creates an instance with a null value.

This approach simplifies the code by leveraging nullable types, but it’s worth noting that the semantic
meaning of Option<T> and nullable types is not the same. The Option<T> type explicitly
communicates the intention of representing an optional value, whereas nullable types may have
different use cases.

Usage of option types in C#

Option<int> GetPositiveNumber(int num)
{
    if (num > 0)
        return Option<int>.Some(num);
    else
        return Option<int>.None();
}

Option<int> result = GetPositiveNumber(-5);

if (result.HasValue)
{
    int value = result.Value;
    Console.WriteLine($"Positive number found: {value}");
}
else
{
    Console.WriteLine("No positive number found.");
}

In this usage example, the GetPositiveNumber function returns an Option type to indicate
whether a positive number was found or not.

The Maybe monad in C#

The Maybe monad is a construct that’s used to chain computations that may produce null results
or fail gracefully. It allows us to avoid null reference exceptions and handle potential errors more
elegantly and functionally.

Option types and the Maybe monad 347

Here’s an example of a Maybe monad in C# using extension methods:

public static class MaybeExtensions
{
    public static Maybe<T> ToMaybe<T>(this T value) => new
Maybe<T>(value);
}
public class Maybe<T>
{
    private readonly T value;

    public bool HasValue { get; }
    public T Value => HasValue ? value : throw new
InvalidOperationException("Maybe has no value.");

    private Maybe() => HasValue = false;
    public Maybe(T value) { HasValue = true; this.value = value; }
}

In this example, we define a Maybe<T> class, and the MaybeExtensions class provides an
extension method to convert a value into a Maybe monad.

Let’s look at the use of the Maybe monad in C#:

Maybe<int> result = GetPositiveNumber(-5).ToMaybe();
if (result.HasValue)
{
    int value = result.Value;
    Console.WriteLine($"Positive number found: {value}");
}
else
{
    Console.WriteLine("No positive number found.");
}

In this example, we chain the Maybe monad with the Option type from the previous example using
the ToMaybe() extension method.

By using the Option type and the Maybe monad in C#, we can create safer and more expressive
code by explicitly handling scenarios where values may be absent, or operations may fail. These
functional programming concepts promote better error handling and can lead to more robust and
reliable applications.

Functional Programming348

Functional error handling
Functional error handling in C# involves using functional programming techniques to handle and
propagate errors more elegantly and robustly. It focuses on avoiding exceptions and mutable state for
error handling and instead relies on data structures and monads to represent and manage errors in
a functional and declarative way.

There are several approaches to functional error handling in C#:

•	 Option types and the Maybe monad: As discussed earlier, Option types and the Maybe
monad can be used to represent the absence of a value or the success/failure of an operation
without resorting to null references or exceptions. Instead of throwing exceptions, functions
can return Option types or Maybe monads, allowing callers to handle the absence of results
or potential errors explicitly.

Here’s an example of using Option types for error handling in C#:
public Option<int> TryParseInt(string input)
{
    if (int.TryParse(input, out int result))
        return Option<int>.Some(result);
    else
        return Option<int>.None();
}

•	 Either monad: The Either monad is a construct that represents a result that can be either
a success value (Right) or an error value (Left). This approach allows functions to return
either the successful result or an error message, making it easier to propagate and functionally
handle errors.

Here’s an example of using the Either monad for error handling in C#:
public Either<int, string> TryParseInt(string input)
{
    if (int.TryParse(input, out int result))
        return Either<int, string>.Left(result);
    else
        return Either<int, string>.Right("Invalid input");
}

•	 Railway-oriented programming (ROP): ROP is an error-handling approach where functions
return a result object that contains both the success value and any potential error messages. It
enables composing functions together in a way that automatically handles errors and propagates
them without breaking the execution flow.

Functional error handling 349

Here’s an example of using ROP for error handling in C#:
public Result<int> TryParseInt(string input)
{
    if (int.TryParse(input, out int result))
        return Result.<int>.Success(result);
    else
        return Result.<int>.Failure("Invalid input");
}

In this approach, the Result<T> class represents the result of an operation, which can be
either a success, Success, or a failure, Failure. The Result object contains both the
success value (if applicable) and an error message (if there was a failure).

Functional error handling in C# encourages developers to handle errors explicitly using data structures
such as Option types, the Maybe monad, the Either monad, and Result objects. By relying on
functional programming concepts, developers can create more reliable and maintainable code that
elegantly handles and propagates errors throughout their applications. Additionally, these approaches
make it easier to reason about and test error scenarios and lead to more robust and predictable code.

Incorporating functional error-handling techniques in C# can greatly enhance the reliability and
maintainability of code. Each of the mentioned approaches – Option types, the Maybe monad, the
Either monad, and Result objects – has its use cases, and choosing the right one depends on the
specific requirements and design preferences.

Option types

Use case: Option types are suitable when an operation might result in a value or nothing (null). They
help eliminate null reference exceptions and make it explicit that a value might be absent.

Example: Returning Option<string> instead of a nullable string when searching for an item in
a collection. This communicates that the item may or may not be found.

The Maybe monad

Use case: Similar to Option types, Maybe monads represent computations that may fail. They are beneficial
for chaining operations, where any failure in the chain causes subsequent operations to short-circuit.

Example: Using a Maybe monad to chain a series of data transformations where any step might fail,
preventing unnecessary computation in case of failure.

The Either monad

Use case: Either monads are useful when there are two distinct outcomes, often representing
success and failure. They allow for more detailed error information and can be used to propagate
context about the failure.

Functional Programming350

Example: A function returning Either<ErrorType, ResultType>, where ErrorType
contains information about the failure and ResultType represents the successful result.

Result objects

Use case: Result objects are suitable for scenarios where you want to communicate both success
and failure explicitly. They often include additional information about the error.

Example: A function returning Result<string, ErrorType> where the string represents a
successful result, and ErrorType contains details about the failure.

Choosing the right approach depends on the level of granularity you need for error handling, the
complexity of your application, and your team’s familiarity with these concepts. Additionally, consider
whether you want to short-circuit on the first error that’s encountered or accumulate multiple errors
before halting execution. In any case, adopting these functional programming concepts for error
handling in C# can lead to more robust, testable, and comprehensible code.

Functional data transformation and pipelines
Functional data transformation and pipelines in C# refer to the practice of using functional programming
techniques to transform data through a sequence of operations, creating a concise and declarative flow.
Instead of using imperative loops and mutable state to modify data, functional data transformation
relies on higher-order functions, Lambda expressions, and LINQ to apply a series of operations to
the data without changing its original state.

Functional data transformation involves using pure functions to transform input data into new
output data. The transformation functions take the input data and return a new data structure with
the desired changes. These functions do not modify the original data; instead, they create new data
based on the input.

Here’s an example of functional data transformation in C# using the LINQ Select and Where methods:

List<int> numbers = new List<int> { 1, 2, 3, 4, 5 };
// Transform the numbers into their squares
List<int> squares = numbers.Select(x => x * x).ToList();
// Filter out the even numbers
List<int> evenNumbers = numbers.Where(x => x % 2 == 0).ToList();

In this example, Select and Where are LINQ methods that are used for functional data transformation.
The Select method transforms each element of the numbers list into its square, and the Where
method filters out the even numbers.

Functional pipelines combine multiple data transformation operations into a sequence, creating a pipeline
that processes data from one step to another. Each operation in the pipeline takes the output of the previous
operation as input, allowing for a chain of transformations that can be composed and extended easily.

Functional data transformation and pipelines 351

Here’s an example of a functional pipeline in C#:

List<int> numbers = new List<int> { 1, 2, 3, 4, 5 };
List<int> result = numbers
    .Where(x => x % 2 == 0)       // Filter out the even numbers
    .Select(x => x * x)           // Transform the remaining numbers
into their squares
    .OrderByDescending(x => x)    // Sort the squared numbers in
descending order
    .ToList();

In this example, the pipeline starts with the numbers list and applies a sequence of operations using
LINQ methods. First, it filters out the even numbers, then transforms the remaining numbers into
their squares, and finally sorts the squared numbers in descending order.

Functional data transformation and pipelines in C# promote a more expressive and concise way of
processing data. By using functional programming techniques, developers can create clean and readable
code that is easier to understand, test, and maintain. Additionally, functional pipelines allow for better
separation of concerns and enable developers to build complex data transformations by composing
simple functions into a chain of operations.

The Task Parallel Library (TPL) in C# provides powerful tools for parallelizing and concurrently
executing tasks. When combined with functional data transformation and pipelines, it can lead to
efficient parallel processing. The TPL Dataflow library is particularly helpful for building data-centric
parallel applications with a focus on pipelining.

Let's consider a simple example of using the TPL Dataflow for data transformation.

TPL Dataflow is a library that provides dataflow components to help increase the robustness of
concurrency-enabled applications. These dataflow components are useful when you have multiple
operations that must communicate with one another asynchronously or when you want to process
data as it becomes available.

One way to use TPL Dataflow for parallel data transformation is to use the TransformBlock<TIn-
put,TOutput> class, which represents a dataflow block that invokes a provided function for every
data element received. You can link multiple transform blocks together to create a pipeline of data
transformations and use the ActionBlock<TInput> class to perform an action on the final output.

Here is an example of a simple console app that uses TPL Dataflow for parallel data transformation:

using System;
using System.Threading.Tasks;
using System.Threading.Tasks.Dataflow;

namespace CH12_Async
{

Functional Programming352

    class Program
    {
        static async Task Main(string[] args)
        {
            // Create some sample data
            int[] data = new int[10];
            Random random = new Random();
            for (int i = 0; i < data.Length; i++)
            {
                data[i] = random.Next(1, 100);
            }

            // Create the dataflow blocks
            var multiplyByTwo = new TransformBlock<int, int>(x => x *
2);
            var addFive = new TransformBlock<int, int>(x => x + 5);
            var printResult = new ActionBlock<int>(x => Console.
WriteLine(x));

            // Link the blocks together
            var options = new DataflowLinkOptions {
PropagateCompletion = true };
            multiplyByTwo.LinkTo(addFive, options);
            addFive.LinkTo(printResult, options);

            // Post data to the first block
            foreach (var item in data)
            {
                multiplyByTwo.Post(item);
            }

            // Mark the first block as complete
            multiplyByTwo.Complete();

            // Wait for the last block to complete
            await printResult.Completion;

            // Print a message
            Console.WriteLine("Dataflow completed.");
        }
    }
}

Lazy evaluation 353

In this example, we have the following:

•	 BufferBlock<int> is used to store the input data

•	 TransformBlock<int, string> is used for two parallel transformations

•	 ActionBlock<string> is used to process the final results

This code creates three dataflow blocks: a transform block that multiplies the input by two, a transform
block that adds five to the input, and an action block that prints the input to the console. It then links
the blocks together using the LinkTo method, and sets the PropagateCompletion option to true, which
means that when a source block completes, it will signal the completion to its target block, and so
on until the action block completes. It then posts some sample data to the first block, marks the first
block as complete, and waits for the last block to complete. The output of the program should look
something like this:

17
29
39
23
35
27
21
19
25
37
Dataflow completed.

Your numbers will be different, but the data output format should be the same. This example
demonstrates how TPL Dataflow can be used to create a simple parallel data transformation pipeline,
taking advantage of immutability and functional programming concepts in a concurrent setting.

Lazy evaluation
Lazy evaluation in C# is a functional programming technique that postpones the evaluation of an
expression or computation until the result is needed. Instead of immediately computing the value
of an expression when it is defined, lazy evaluation allows the value to be computed only when it is
requested for the first time. This can improve performance and reduce unnecessary computations,
especially for expensive or time-consuming operations.

In C#, lazy evaluation is commonly achieved using the Lazy<T> class, which is part of the .NET
Framework. The Lazy<T> class allows us to defer the execution of a computation and ensures that
the computation is executed only once, no matter how many times the value is accessed.

Functional Programming354

Here’s an example of lazy evaluation in C# using Lazy<T>:

using System;
public class Example
{
    private static Lazy<int> lazyValue = new Lazy<int>(() =>
ComputeValue());
    private static int ComputeValue()
    {
        // Some expensive computation
        Console.WriteLine("Computing the value...");
        return 42;
    }
    public static void Main()
    {
        Console.WriteLine("Before accessing the value.");

        // The computation is not executed until we access the Value
property.
        int value = lazyValue.Value;

        Console.WriteLine($"Value: {value}");

        // The computation is executed only once, subsequent accesses
use the cached result.
        int cachedValue = lazyValue.Value;

        Console.WriteLine($"Cached Value: {cachedValue}");
    }
}

In this example, we use the Lazy<T> class to create a lazy-evaluated value called lazyValue. The
ComputeValue() method represents some expensive computation that we want to defer. When
we run the Main() method, we print a message before accessing the value. Then, when we access the
Value property of lazyValue, the ComputeValue()method is executed for the first time, and
result (42) is cached. Subsequent accesses to the Value property do not recompute the value
and instead use the cached result, as demonstrated by the "Cached Value" message.

Lazy<T> and asynchronous functions (async and Task<T>) in C# serve distinct purposes.
Lazy<T> is designed for deferred and single initialization, allowing the instantiation of an object to
be postponed until it is accessed for the first time. The initialization is synchronous, ensuring it occurs
only once, and subsequent requests return the cached instance. It’s particularly useful for scenarios
where the cost of creating the object is high, and you want to avoid unnecessary instantiation. On the
other hand, asynchronous functions, which are marked with the async keyword and utilize Task<T>,

Pattern matching 355

are employed for non-blocking and concurrent execution of operations. They enable the program to
continue with other tasks while waiting for asynchronous operations, making them well-suited for
scenarios involving parallelism or asynchronous I/O, where blocking operations would hinder overall
performance. While Lazy<T> focuses on deferred instantiation and single initialization, asynchronous
functions excel in scenarios requiring concurrent and non-blocking execution.

Lazy evaluation is particularly useful when you’re dealing with computationally intensive operations or
data that might not be required during the entire execution of a program. By deferring computations
until they are needed, lazy evaluation can lead to more efficient and performant code, making it an
essential technique for functional programming in C#.

Pattern matching
Functional pattern matching in C# is a technique that’s used to match the structure of data against a series
of patterns and execute specific code blocks based on the matched pattern. It allows developers to express
complex conditional logic in a more concise and declarative way, making code more readable and maintainable.

In C#, functional pattern matching can be achieved using the switch statement with the case
pattern matching feature that was introduced in C# 7.0. With this feature, you can pattern match on
various types, constant values, or even custom patterns using the when keyword.

Here’s an example of functional pattern matching in C#:

public class Shape
{
}
public class Circle : Shape
{
    public double Radius { get; set; }
}

public class Rectangle : Shape
{
    public double Width { get; set; }
    public double Height { get; set; }
}

public class Triangle : Shape
{
    public double SideA { get; set; }
    public double SideB { get; set; }
    public double SideC { get; set; }
}
public class Program

Functional Programming356

{
    public static void Main()
    {
        Shape shape = new Rectangle { Width = 3, Height = 4 };

        double area = CalculateArea(shape);

        Console.WriteLine($"Area: {area}");
    }
public static double CalculateArea(Shape shape)
    {
        switch (shape)
        {
            case Circle circle:
                return Math.PI * circle.Radius * circle.Radius;
            case Rectangle rectangle:
                return rectangle.Width * rectangle.Height;
            case Triangle triangle when IsRightAngled(triangle):
                double s = (triangle.SideA + triangle.SideB +
triangle.SideC) / 2;
                return Math.Sqrt(s * (s - triangle.SideA) * (s -
triangle.SideB) * (s - triangle.SideC));
            default:
                throw new ArgumentException("Unsupported shape
type.");
        }
    }

    public static bool IsRightAngled(Triangle triangle)
    {
        return Math.Pow(triangle.SideA, 2) + Math.Pow(triangle.SideB,
2) == Math.Pow(triangle.SideC, 2)
            || Math.Pow(triangle.SideB, 2) + Math.Pow(triangle.SideC,
2) == Math.Pow(triangle.SideA, 2)
            || Math.Pow(triangle.SideC, 2) + Math.Pow(triangle.SideA,
2) == Math.Pow(triangle.SideB, 2);
    }
}

In this example, we have a Shape class and three derived classes called Circle, Rectangle, and
Triangle. The CalculateArea method uses the switch statement with pattern matching to
calculate the area of the given shape based on its type and properties. We use pattern matching to
extract data from the shape variable and execute the corresponding code block based on the shape’s
type. The when keyword is used to match right-angled triangles and calculate their area accordingly.

Currying and partial application 357

Functional pattern matching in C# allows for more expressive and clear code when handling complex
branching scenarios, especially when working with polymorphic types. It is a powerful tool for
functional programming and enhances the readability and maintainability of code, making it easier
to handle multiple cases and scenarios concisely and efficiently.

Currying and partial application
Currying and partial application are techniques that are used in functional programming to transform
functions, but they differ in their approach and application.

Currying

Definition: Currying is a process in which a function that takes multiple arguments is transformed
into a sequence of functions, each taking a single argument.

Resulting function: The resulting curried function returns a new function with each invocation,
expecting one argument at a time until all the original arguments are supplied.

Here’s an example:

// Curried function
Func<int, Func<int, int>> addCurried = x => y => x + y;
// Usage
var addWith5 = addCurried(5);
int result = addWith5(3); // Result: 8

Partial application

Definition: Partial application involves fixing a certain number of arguments of a function, creating
a new function with fewer parameters.

Resulting function: The resulting partially applied function can be invoked with the remaining
arguments to produce a specialized version of the original function.

Here’s an example:

// Original function
Func<int, int, int> add = (x, y) => x + y;
// Partial application
Func<int, int> addWith5 = x => add(x, 5);
// Usage
int result = addWith5(3); // Result: 8

Functional Programming358

Key differences

Arity: Currying involves transforming a function into a sequence of single-argument functions, while
partial application fixes a subset of arguments in a multi-argument function.

Usage: Currying is primarily concerned with transforming functions for a more flexible composition,
allowing for the creation of functions with varying arities. Partial application, on the other hand,
focuses on creating specialized versions of functions with fixed parameters.

Syntax: Currying often relies on creating nested functions or using language features that explicitly
support currying, while partial application can be achieved through various means, such as Lambda
expressions or library functions.

Currying and partial application are related concepts in functional programming, but they address
different aspects of function transformation. Currying decomposes a function’s arity, while partial
application fixes some arguments, creating specialized functions.

Concurrency with functional programming
Concurrency with functional programming in C# involves handling concurrent and parallel execution
of code in a way that avoids shared mutable state and embraces functional programming principles. It
focuses on creating independent, immutable data and pure functions to manage concurrent operations,
promoting safety, modularity, and scalability.

Here are some key aspects of concurrency with functional programming in C#:

•	 Immutable data: Functional programming encourages the use of immutable data structures,
where data cannot be modified after creation. By avoiding a shared mutable state, concurrent
operations can work independently without interfering with each other’s data. Immutable data
reduces the risk of race conditions and other concurrency-related bugs.

•	 Pure functions: Pure functions, which produce the same output for the same input and have
no side effects, are inherently suitable for concurrent programming. Since pure functions
don’t rely on a shared state, they can be executed concurrently without worrying about data
corruption or unintended interactions.

•	 Functional data transformation: Functional programming encourages data transformation
using pure functions and pipelines. When dealing with concurrent operations, functional data
transformation ensures that the original data remains intact, and each operation generates new
data without modifying existing structures.

•	 Asynchronous programming: Asynchronous programming is a common technique in C#
for handling concurrency. Using the async and await keywords, developers can create
asynchronous functions that allow concurrent execution without blocking the main thread.
This enables better responsiveness in applications, especially for tasks such as I/O operations
or network requests.

Concurrency with functional programming 359

Let’s consider a simple example of processing data asynchronously using functional programming
concepts in C#. In this example, we’ll use async and await along with functional-style
composition to transform a collection of integers asynchronously:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
class Program
{
    static async Task Main()
    {
        List<int> inputNumbers = Enumerable.Range(1, 10).
ToList();
        // Async data processing pipeline
        var result = await ProcessDataAsync(inputNumbers,
            async data => await DoubleAsync(data),
            async data => await AddFiveAsync(data),
            async data => await SquareAsync(data)
        );
        Console.WriteLine("Result: " + string.Join(", ",
result));
    }
    static async Task<List<int>> ProcessDataAsync(List<int>
data, params Func<List<int>, Task<List<int>>>[] transformations)
    {
        // Compose asynchronous transformations
        var composedTransformation = transformations.
Aggregate(async (currentData, transformation) => await
transformation(await currentData));

        // Apply the composed transformation to the input data
        return await composedTransformation(data);
    }
    static async Task<List<int>> DoubleAsync(List<int> data)
    {
        await Task.Delay(100); // Simulate asynchronous
operation
        return data.Select(x => x * 2).ToList();
    }
    static async Task<List<int>> AddFiveAsync(List<int> data)
    {
        await Task.Delay(100); // Simulate asynchronous
operation
        return data.Select(x => x + 5).ToList();
    }

Functional Programming360

    static async Task<List<int>> SquareAsync(List<int> data)
    {
        await Task.Delay(100); // Simulate asynchronous
operation
        return data.Select(x => x * x).ToList();
    }
}

In this example, the ProcessDataAsync function takes a list of integers and a series of
asynchronous transformation functions as parameters. Then, it composes these transformations
using functional programming techniques and applies them to the input data.

DoubleAsync, AddFiveAsync, and SquareAsync are asynchronous transformation
functions that simulate asynchronous operations by using await Task.Delay(100).

This example demonstrates the use of functional-style composition to create a pipeline of
asynchronous data transformations, providing a clean and expressive way to process data
asynchronously in a functional programming manner.

•	 Functional concurrency patterns: Functional programming principles can be applied to
concurrency in C# to improve code reliability, readability, and maintainability. Let’s look at
some functional concurrency patterns in C#:

	� Immutable data:

	� Principle: Make use of immutable data structures to ensure that data remains unchanged
during concurrent operations. This eliminates the need for locks and helps prevent
race conditions.

	� Example: Instead of modifying a shared data structure, create new instances with the
desired changes.

	� Pure functions:

	� Principle: Design functions to be pure, meaning they produce the same output for the
same input and have no side effects. Pure functions simplify reasoning about concurrency
since they don’t rely on or modify shared state.

	� Example: Avoid functions that modify global variables or have side effects on shared data.

	� Map and reduce:

	� Principle: Utilize map and reduce operations to parallelize tasks. The map operation
applies a function to each element independently, while the reduce operation combines
the results. This pattern is well-suited for parallel processing.

	� Example: Use Parallel.ForEach or PLINQ for parallelizing map operations, and
aggregate results with a reduction function.

Concurrency with functional programming 361

	� Concurrency models (actors):

	� Principle: Implement the actor model, where actors are isolated entities that communicate
through messages. Each actor has its state and processes messages sequentially, avoiding
a shared mutable state.

	� Example: Use frameworks such as Akka.NET or design custom actor systems to implement
the actor model in C#.

	� Async/await:

	� Principle: Leverage async and await to write asynchronous code in a more functional
style. This allows for the composition of asynchronous operations without resorting to
callback-based patterns.

	� Example: Use async functions to represent asynchronous operations and compose them
using await for more readable and maintainable asynchronous code.

	� Software Transactional Memory (STM):

	� Principle: Implement STM to manage shared state in a concurrent environment. STM provides
a way to encapsulate transactions, ensuring that updates to shared data are atomic and consistent.

	� Example: Libraries such as System.Threading.Channels in C# offer primitives
for building transactional systems.

	� Functional Reactive Programming (FRP):

	� Principle: FRP allows you to express computations over time as functions, making it
easier to handle asynchronous events. Libraries such as Reactive Extensions (Rx) provide
functional constructs for working with asynchronous and event-driven code.

	� Example: Use Rx to handle and compose asynchronous events in a functional and
declarative manner.

By applying these functional concurrency patterns, developers can write concurrent code that
is more modular, easier to reason about, and less prone to common concurrency issues such
as race conditions and deadlocks.

By combining functional programming principles with concurrency techniques such as asynchronous
programming, C# developers can create robust and scalable concurrent applications. Functional
programming helps manage complexity and reduces the likelihood of concurrency bugs by promoting
immutable data, pure functions, and functional data transformation. As a result, functional programming
in C# can lead to more reliable and maintainable concurrent code bases.

Next, we’ll look at recursion.

Functional Programming362

Recursion
Recursion is a programming concept where a function calls itself to solve a problem. In the context
of functional programming in C#, recursion is a powerful technique that’s used to solve complex
problems by breaking them down into simpler subproblems that can be solved recursively.

In functional programming, the focus is on expressing computations as the evaluation of mathematical
functions rather than changing state or modifying variables. Recursion aligns well with this paradigm
because it allows you to define functions that operate on smaller pieces of data, gradually reducing
the problem’s size until a base case is reached, at which point the solution can be computed and
propagated back up the call stack.

Here’s a step-by-step explanation of how recursion works in functional C# programming:

1.	 Base case: Every recursive function needs a base case. This is the simplest form of the problem
that can be solved directly without further recursion. Without a base case, the recursion would
continue indefinitely, leading to a stack overflow.

2.	 Divide and conquer: The problem is divided into smaller subproblems that are similar to the
original problem but with reduced complexity. Each recursive call operates on a smaller dataset.

3.	 Recursive call: Inside the function, you call the same function you’re defining, but with the
smaller subproblem as the input. This is the heart of recursion. The function will keep calling
itself with smaller and smaller subproblems until the base case is reached.

4.	 Combining results: As the recursion unwinds (that is, the base case is hit and the calls start
returning), the results from the recursive calls are combined to solve the original problem.
This combining process often involves mathematical operations, list concatenation, or other
similar operations.

Here’s a simple example of calculating the factorial of a number using recursion in functional C#:

using System;
class Program
{
    static int Factorial(int n)
    {
        // Base case
        if (n == 0)
            return 1;

        // Recursive call
        return n * Factorial(n - 1);
    }

    static void Main()

Summary 363

    {
        int number = 5;
        int result = Factorial(number);
        Console.WriteLine($"Factorial of {number} is {result}");
    }
}

In this example, the Factorial function calls itself with decreasing values of n until n reaches 0
(the base case). The results are then combined as the recursion unwinds, eventually giving you the
factorial of the input number.

Keep in mind that while recursion is elegant, it can be less efficient than iterative solutions for certain
problems as each recursive call adds to the call stack, potentially leading to a stack overflow if the
recursion goes too deep. However, many problems are naturally suited for recursive solutions, and
they can be more concise and easier to understand in a functional programming context.

Now that we’ve finished our look into functional programming in C#, let’s recap what we’ve just learned.

Summary
In this chapter, we covered various aspects of functional programming in C#. Functional programming
is a programming paradigm that treats computation as the evaluation of mathematical functions and
avoids mutable data and state changes. In C#, functional programming can be embraced using Lambda
expressions, higher-order functions, immutability, and other functional concepts.

Key principles of functional programming include immutability (avoiding mutable data), pure functions
(no side effects), higher-order functions (functions that take or return other functions), and first-class
functions (functions treated as data).

Functional data transformation involves transforming data using pure functions to produce new data
without modifying the original. Functional pipelines chain multiple data transformation operations
together declaratively and concisely.

Functional programming provides techniques for handling errors more elegantly, such as Option
types, the Maybe monad, and the Either monad. These structures allow for explicit representation
of the absence of values and success/failure outcomes without relying on exceptions.

Functional pattern matching allows developers to express complex conditional logic in a more concise
way using the switch statement with pattern-matching features. It enables matching against types,
constant values, or custom patterns to execute specific code blocks based on the matched pattern.

Concurrency with functional programming in C# involves using immutable data, pure functions, and
asynchronous programming to manage concurrent and parallel execution. It encourages handling
concurrent operations independently without a shared mutable state to avoid race conditions and
data corruption.

Functional Programming364

By applying functional programming techniques in C#, developers can create more expressive, modular,
and maintainable code. The use of pure functions, immutability, functional data transformation,
and error handling enhances the reliability and scalability of applications. Additionally, functional
programming facilitates better concurrency management, ensuring safer and more responsive
concurrent applications.

In the next chapter, we will look at cross-platform development with MAUI. But before we move on,
answer the following questions to see how much knowledge you’ve retained.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 What is functional programming, and how does it differ from imperative programming?

2.	 How can functional data transformation be achieved in C#? Provide an example.

3.	 Explain the concept of functional error handling in C#. What are the benefits of using Option
types and the Maybe monad?

4.	 Describe functional pattern matching in C# using the switch statement with pattern matching.
Provide an example of how it can be used.

5.	 How does immutability contribute to functional programming in C#? What advantages does
it offer in terms of concurrency and thread safety?

6.	 Discuss the role of higher-order functions in functional programming. How can they be used
to create more modular and reusable code in C#?

7.	 Explain how concurrency with functional programming is managed in C#. How does the use of
pure functions and asynchronous programming contribute to better concurrent applications?

Further reading
•	 Functional Programming in C#: Classic Programming Techniques for Modern Projects, by Oliver

Sturm: This book provides a comprehensive guide to functional programming concepts in C#,
covering topics such as immutability, higher-order functions, and functional data transformation

•	 Functional Programming Principles in C# (Pluralsight course): This online course offers
in-depth explanations of functional programming principles in C# with practical examples
and hands-on exercises

•	 Real-World Functional Programming: With Examples in F# and C#, by Tomas Petricek and
Jon Skeet: Although focused on F# as the primary language, this book explores functional
programming concepts that can be applied to C# as well

Further reading 365

•	 C# Functional Programming: Unleash the power of functional programming for your real-world
applications, by Oliver Sturm: This book delves into functional programming techniques
specifically tailored for C# developers, emphasizing practical applications

•	 Concurrency in C# Cookbook: Asynchronous, Parallel, and Multithreaded Programming, by
Stephen Cleary: This cookbook provides in-depth guidance on handling concurrency in C#,
covering asynchronous programming and other techniques used in functional programming

•	 Introduction to C# 7 Pattern Matching (Microsoft documentation): The official documentation
from Microsoft on the C# 7 pattern matching feature, including examples and usage guidelines

•	 Introduction to Asynchronous Programming in C# (Microsoft documentation): Official
documentation from Microsoft on asynchronous programming using async and await in
C#, a key component of functional concurrency

Remember that while C# supports functional programming concepts, it’s essential to adapt them
appropriately to your project’s requirements and context. Exploring these resources can help you
deepen your understanding of functional programming in C# and enable you to write more elegant,
expressive, and maintainable code.

13
Cross-Platform Application

Development with MAUI

Microsoft .NET MAUI is an application framework for developing cross-platform applications. You
can develop applications using C# and XAML or you can develop them using Blazor. In this chapter,
we will focus on C# and XAML.

When using MAUI to develop applications, you can target Windows, Android, Tizen, iOS, iPad-OS,
and macOS. We will be developing a simple to-do list application using C# and XAML.

We will cover the following in this chapter:

•	 Project overview: We will look at the screenshots of the project we will be developing in this
chapter for the following platforms:

	� Android

	� Windows

•	 Creating the project: We will be building up our project using the following:

	� The MVVM pattern

	� CommunityToolkit.Mvvm

Here’s what you will learn:

•	 How to build a cross-platform that you can deploy to Android, Tizen, iOS, macOS, Linux,
and Windows

•	 How to install and use CommunityToolkit.Mvvm to remove the need for boilerplate code

•	 How to implement the MVVM pattern

•	 How to deploy your application to Windows and an Android emulator

Cross-Platform Application Development with MAUI368

Technical requirements
You will need the latest version of Visual Studio with the MAUI workload installed to complete the
project presented in this chapter. It will also help if you have an internet connection. The source code
can be downloaded from https://github.com/PacktPublishing/Clean-Code-with-
CSharp-Second-Edition/tree/main/CH13/CH13_MAUI.

Project overview
In this section, we’ll review the application we will be building in MAUI. It is a simple to-do list.
The application will run on all supported operating systems and devices. Let’s run through the
Windows screenshots.

Windows version

When you start the Windows version, you will see what’s shown in Figure 13.1:

Figure 13.1: The to-do list home page

If you have an internet connection, type your task’s name and click the Add button. Your task will be
added to the screen, as shown in Figure 13.2:

Figure 13.2: The to-do home page with a task added

https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH13/CH13_MAUI
https://github.com/PacktPublishing/Clean-Code-with-CSharp-Second-Edition/tree/main/CH13/CH13_MAUI

Project overview 369

As you can see, the task has been added with the option to delete the task once you have completed
it. If you try and add a task without an internet connection, you will not be able to add the task and
will be presented with the alert shown in Figure 13.3:

Figure 13.3: An alert showing that the user has no internet connectivity

The API that’s used to check internet connectivity is the same across all platforms. However, it uses
platform-specific code to check for network connectivity. Once a task has been added, you can click
on the task to view its details, as shown in Figure 13.4:

Figure 13.4: The task’s details page

The details page just displays the name of the task we clicked on. You could expand this page to edit
the details and save them. There are also two back buttons. The first one is the default button in the
top-left corner, while the second is the purple button that we added. Clicking either of these buttons
will take you back to the main page. On the main page, when you click on the Delete button, it deletes
the task from the item source and the main page.

Let’s look at the same pages on Android.

Cross-Platform Application Development with MAUI370

Android version

For the following screenshots, we will be using Android Emulator for the Google Pixel 5 Android
phone. When you run the application on Android, you will see the home page shown in Figure 13.5:

Figure 13.5: The to-do list home page on Android

Project overview 371

Adding a test when you have internet connectivity will result in the task being added to the screen,
as shown in Figure 13.6:

Figure 13.6: The to-do list with a task added to the list

Cross-Platform Application Development with MAUI372

As you can see, the task is added to the screen, along with a delete button. Tapping on the task will
take you to the details screen, as shown in Figure 13.7:

Figure 13.7: The to-do details page

Again, just like in the Windows version, we have two buttons to go back to the main page. Once back
on the main page, tapping the delete button will remove the task from the list and it will disappear
from the screen.

Project overview 373

If you try and add a task while the Android phone is in Airplane mode, then you will see the alert
shown in Figure 13.8:

Figure 13.8: An alert regarding loss of internet connectivity

From the Windows and Android screenshots, it’s clear that both versions of the app look identical
despite their platform-specific layouts and features.

Now that you know what you will be building and how it will look on the different platforms, let’s get
to work and build the project.

Cross-Platform Application Development with MAUI374

Creating the project
In this section, we will build the application we have just walked through. Start by opening Visual
Studio and creating a new project. From the list of available project templates, select .NET MAUI
App, as shown in Figure 13.9. Then, click Next:

Figure 13.9: Visual Studio’s Create a new project dialog

Call the project CH13_MAUI, as shown in Figure 13.10. Then, click Next:

Figure 13.10: Visual Studio’s Configure your new project dialog

Creating the project 375

Make sure that the version of .NET that’s selected is .NET 7.0 (Standard Term Support), as shown
in Figure 13.11:

Figure 13.11: Visual Studio’s Additional information dialog

Click on the Create button to create the solution. By default, Visual Studio will present a tabbed
dialog with useful information on learning, building, integrating, and deploying MAUI applications,
as shown in Figure 13.12:

Figure 13.12: .NET MAUI’s Help tab in Visual Studio

Running through these resources will help you learn and get the most out of developing applications
while using the .NET MAUI cross-platform application framework. If you have a look at the Solution
Explorer area, you will see the following items:

Cross-Platform Application Development with MAUI376

Figure 13.13: Solution Explorer displaying the .NET MAUI application items

As shown in Figure 13.13, we only have a single project in our solution that targets the Android, iOS,
MacCatalyst, Tizen, and Windows platforms. Each platform has a folder that contains platform-
specific items that we can use when targeting those specific platforms with platform-specific code
and configurations.

Creating the project 377

In the Properties folder, you will find the launchSettings.json file. Use this to provide custom
launch settings for when you build and run your project.

We group our resources in the Resources folder. This folder contains the following folders: AppIcon,
Fonts, Images, Raw, Splash, and Styles. The preferred image format during development is SVG.
When the application is being built, it will target a specific platform and will produce platform-specific
PNGs from the SVGs during compilation time.

The Raw folder is used to store the assets that you want to include with your app when it is deployed
to a target platform. Mark any assets that you put in this folder as MauiAsset.

You can use specific fonts within your application by placing font files (TTF files) in the Fonts folder.

To style the application, you can place XAML resource dictionaries in the Styles folder. We already
have two resource dictionaries for colors and styles.

Finally, you will see the following four files:

•	 App.xaml: This file is part of the application’s definition and is used for specifying application-
level resources and styles, as well as defining the application life cycle. It typically contains XAML
markup that declares resources such as styles, brushes, and other application-level elements.
Additionally, you may specify the initial page or shell for your application in the Application tag.

•	 AppShell.xaml: In .NET MAUI, the concept of a Shell is introduced to define the structure of the
application, including navigation and layout. AppShell.xaml is the main file where you define
the structure of your application’s user interface using the Shell class. Inside AppShell.xaml,
you’ll find the structure of your application, including tabs, flyout items, and other navigation-
related elements. It essentially acts as a container for the main navigation structure of your app.

•	 MainPage.xaml: MainPage.xaml typically represents the main content of your application. It’s
the default page or view that is displayed when your app starts or when navigating to the root
content. This file contains the user interface elements specific to the main content of your app. It’s
the starting point for the user experience and may include various controls, layouts, and views.

•	 MauiProgram.cs: In .NET MAUI, MainProgram.cs is the entry point for your application and
is where the application is initialized and launched. It contains the Main method, which is
the starting point of execution. The file typically includes code for initializing the application,
setting up dependencies, and launching the main application instance. It may also contain
platform-specific initialization code.

Understanding XAML structure

The MAUI XAML structure is similar to the Xamarin.Forms XAML, but there are some changes
and enhancements to support the new .NET MAUI architecture. Keep in mind that details may have
evolved since this book was published, so it’s a good idea to check the official documentation or
community resources for the latest information.

Cross-Platform Application Development with MAUI378

Here’s a general overview of the MAUI XAML structure:

1.	 Page element: In .NET MAUI, UI layouts are defined within a page. A page represents a single
screen or a UI component. The root element in a XAML file is typically ContentPage, which
is a type of page that can contain a single view:

<ContentPage
    xmlns=http://schemas.microsoft.com/dotnet/2021/maui
    xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
    x:Class="YourNamespace.MainPage">
        <!-- UI elements go here -->
</ContentPage>

2.	 Layouts: .NET MAUI provides a variety of layout containers to organize and structure the UI.
Common layouts include StackLayout, GridLayout, and FlexLayout. These layouts
help arrange child elements in a specific way on the screen:

<StackLayout>
    <Label Text="Hello, MAUI!" />
    <Button Text="Click Me" />
</StackLayout>

3.	 Views and controls: Inside the layouts, you can place various views and controls. Views represent
visual elements such as labels, images, and buttons. Controls, on the other hand, are interactive
elements such as buttons and text entry fields:

<Label Text="Hello, MAUI!" />
<Button Text="Click Me" />

4.	 Data binding: .NET MAUI supports data binding, allowing you to bind UI elements to data
sources. This can simplify the process of updating the UI based on changes in your data:

<Label Text="{Binding MyData}" />

5.	 Resource definitions: You can define resources such as styles, colors, and templates in XAML.
This promotes consistency and reusability across your application:

<ContentPage.Resources>
    <ResourceDictionary>
        <Color x:Key="PrimaryColor">#3498db</Color>
        <Style TargetType="Label">
            <Setter Property="TextColor" Value="{StaticResource
PrimaryColor}" />
        </Style>
    </ResourceDictionary>
</ContentPage.Resources>

Creating the project 379

This is a basic overview, and the structure can become more complex as your application grows.
Remember to consult the official documentation and samples for the most up-to-date and detailed
information on the .NET MAUI XAML structure.

•	 Now that we have created our project and understand how it is made up, let’s start building
up our to-do application.

The MVVM pattern

MVVM stands for Model-View-ViewModel, and it is a software architectural pattern that’s used in
the development of graphical user interfaces (GUIs). MVVM is particularly popular in the context
of frameworks such as Windows Presentation Foundation (WPF) and Xamarin, but its principles
can be applied in various other environments as well:

Figure 13.14: The MVVM pattern

Here’s a breakdown of the MVVM pattern:

•	 Model: The Model represents the data and business logic of the application. It encapsulates the
data and the rules for manipulating that data. It is independent of the user interface and does
not directly communicate with the View.

•	 View: The View is responsible for presenting the data to the user and capturing user input. It is the
visual representation of the data and the user interface. In MVVM, the View is kept as simple as
possible, with minimal code-behind. It is primarily concerned with the presentation and layout.

Cross-Platform Application Development with MAUI380

•	 ViewModel: The ViewModel acts as an intermediary between the View and the Model. It
contains the presentation logic and exposes data and commands that the View can bind to. It
transforms the data from the Model into a form that can be easily displayed in the View, and
it also handles user input from the View. The ViewModel doesn’t have any knowledge of the
View, ensuring separation of concerns.

There are three main concepts to the MVVM pattern:

1.	 Data binding: One of the key features of MVVM is data binding, which allows the View and
ViewModel to be automatically synchronized. Changes in one are reflected in the other without
explicit code to update the UI.

2.	 Commands: MVVM introduces the concept of commands to handle user interactions. A
command in the ViewModel is bound to an action in the View, allowing the ViewModel to
respond to user input.

3.	 Dependency injection: Dependency injection is often used to inject services or other
dependencies into the ViewModel. This makes it easier to test and promotes a more modular
and maintainable design.

The workflow for MVVM consists of four steps:

1.	 The View binds to properties and commands exposed by the ViewModel.

2.	 The ViewModel interacts with the Model to retrieve and manipulate data.

3.	 Changes in the Model are reflected in the ViewModel, which, in turn, updates the View through
data binding.

4.	 User interactions in the View trigger commands in the ViewModel, which may update the
Model or perform other actions.

MVVM promotes a clean separation of concerns, making the code base more modular, testable, and
maintainable. It is widely used in applications where a clear distinction between the user interface
and business logic is desired.

We will be using the MVVM pattern as we build up our application code.

Adding CommunityToolkit.Mvvm

To keep our code clean and succinct, we will be employing the use of the CommunityToolkit.
Mvvm NuGet package, version 8.2.1. So, before you continue, you will need to add this package to
your MAUI project. To do this, follow these steps:

•	 Right-click on your solution and select Manage NuGet Packages….

•	 Then, select the Browse page and search for CommunityToolkit.Mvvm.

Creating the project 381

•	 Now, select the toolkit and add it to your project.

•	 If you have successfully added it, it should appear in the Solution Explorer area under your
project’s dependencies grouping.

The CommunityToolkit.Mvvm NuGet package is a .NET MVVM library that provides useful helpers
for developing .NET MAUI applications. Some of the advantages of using this package are as follows:

•	 It supports the INotifyPropertyChanged, INotifyDataErrorInfo, and ICommand interfaces,
which are essential for implementing the MVVM pattern

•	 It offers two types of commands – RelayCommand and AsyncRelayCommand – that can
execute synchronous or asynchronous actions and support cancellation

•	 It includes two messaging systems, WeakReferenceMessenger and StrongReferenceMessenger,
which enable communication between different objects without creating strong references or
memory leaks

•	 It provides an IoC helper class to configure dependency injection service containers, which
can simplify the creation and management of dependencies

•	 It is compatible with various platforms, such as iOS, Android, macOS, Windows, Tizen, and more

•	 It is well-documented and has many samples and tutorials to help developers get started

You can find more information about the CommunityToolkit.Mvvm NuGet package on its
official website, its GitHub repository, or its blog post. You can also check out a sample project that
demonstrates how to use the package in a .NET MAUI application.

The models

Models can be primitive types or complex object types. For our to-do project, we will be keeping our
model simple – it will be a string type. Therefore, we do not need to create model classes for our project.

But often, your projects will have multiple models that can be classes and/or structured, depending
on your project needs. To keep things organized if you do create models, it is best to create a folder
called Model and place your model classes and structures in it. If you have lots of models, you could
create subfolders for the different areas of your project.

For reasons regarding data security and thread safety, it is always best to have your models be immutable
so that once they’re created, they cannot be modified. One way to do this would be to use constructor
parameters with private setters and public getters.

The following code shows an immutable structure:

namespace CH13_MAUI.Models;

public struct ImmutableModel

Cross-Platform Application Development with MAUI382

{
    public int Id { get; private set; }
    public string Name { get; private set; }
    public string Description { get; private set; }

    public ImmutableModel(
        int id,
        string name,
        string description
    )
    {
        Id = id;
        Name = name;
        Description = description;
    }
}

As you can see, we have placed a struct type called ImmutableModel in our Models folder. This
struct has public properties with private setters. The private setters are called during construction.
These private setters use the constructor parameters to set the property values. Because we are using
private setters during construction, once these properties have been set, they can no longer be modified.

Immutable structures and classes

When considering data security and thread safety in C#, choosing between immutable structs and
immutable classes involves trade-offs. Let’s explore the pros and cons of each:

•	 Immutable structs:

	� Pros:

i.	 Thread safety: Immutable structs are inherently thread-safe because their state
cannot be modified after creation. They eliminate concerns about data races and
concurrent modifications.

ii.	 Performance: Structs are value types and creating them typically involves less overhead
than creating classes. Memory is allocated on the stack rather than the heap, leading to
potentially better performance.

iii.	 Copy-by-value semantics: Immutable structs have copy-by-value semantics, which can
simplify code and avoid unexpected side effects.

	� Cons:

iv.	 Limited size: Structures are generally suitable for small, lightweight objects. For larger
data, using structs may lead to performance issues due to increased copying.

Creating the project 383

v.	 No inheritance: Structures cannot inherit from other types, limiting their extensibility
compared to classes.

vi.	 Reference semantics for large structures: When a large struct is passed as a method
parameter, it’s passed by reference, and the entire struct is copied if it’s been modified
within the method. This can lead to unexpected performance hits.

•	 Immutable classes:

	� Pros:

vii.	 Flexibility: Classes support inheritance, making them more flexible for designing
complex object hierarchies.

viii.	Reference semantics: Passing an immutable class by reference is more efficient than copying
the entire object. Modifications to the object do not involve copying the entire dataset.

ix.	 Large data: Classes are more suitable for large datasets as the cost of copying an object
reference is much smaller than copying the entire dataset.

	� Cons:

x.	 Thread safety concerns: While the class itself may be immutable, its properties might
not be. Extra care is needed to ensure that all properties are also immutable to guarantee
thread safety.

xi.	 Performance overhead: Immutable classes may involve more memory allocations and
heap usage compared to structs, leading to potential performance overhead.

xii.	 Complexity: Classes may introduce more complexity due to inheritance and the potential
for mutable properties.

When deciding whether to use structs or classes, you need to consider the following aspects:

•	 Memory overhead: Immutable classes typically involve more memory overhead due to heap
allocations, while structs are allocated on the stack. This may impact memory usage and
garbage collection.

•	 Use case: Choose based on the specific use case. For small, lightweight data structures, structs
might be more suitable. For complex objects or large datasets, classes may be more appropriate.

•	 Copying overhead: Consider the cost of copying data when choosing between structs and
classes. For large datasets, the overhead of copying a struct type might outweigh the benefits
of immutability.

In conclusion, both immutable structs and immutable classes can be used to achieve thread safety
and data security, but the choice depends on the specific requirements and characteristics of the data
being modeled.

Cross-Platform Application Development with MAUI384

Now that we understand models and how they can affect data security, performance, and thread safety,
we’ll begin to create our ViewModels.

The ViewModels

In the context of C# and the MVVM architectural pattern, a ViewModel is a class that acts as an
intermediary between the user interface (View) and the data model (Model). The main purpose of a
ViewModel is to expose data and command objects to the View while keeping the underlying business
logic and data access separate.

Here are the key aspects of a ViewModel in C#:

•	 Data binding: ViewModels are often used in conjunction with data binding frameworks, such
as Windows Presentation Foundation (WPF) or Xamarin.Forms. Data binding allows you
to establish a connection between the properties of the ViewModel and the controls in the UI.

•	 Presentation logic: The ViewModel contains the presentation logic and formatting required
for the View. This includes formatting dates, numbers, and other data for display purposes.

•	 Commands: ViewModels define commands that are invoked in response to user actions in the
View. These commands are typically implemented using the ICommand interface, and they
encapsulate the logic that should be executed when a specific action is triggered.

•	 Validation: ViewModels may include validation logic to ensure that the data that’s entered by
the user is valid before it is sent to the Model. This can involve implementing validation rules
for individual properties or the entire object.

•	 Communication with the Model: ViewModels interact with the Model to retrieve and update
data. However, the ViewModel shields the View from the complexities of the underlying data
source by providing a simplified interface.

•	 INotifyPropertyChanged: ViewModels often implement the INotifyPropertyChanged
interface. This interface notifies the View when a property of the ViewModel changes, allowing
the UI to automatically update itself in response to changes in the underlying data.

•	 Testability: ViewModels are designed to be testable. Since they encapsulate the application’s logic, you
can write unit tests to ensure that the ViewModel behaves as expected without the need for a GUI.

•	 Separation of concerns: MVVM promotes separation of concerns in your application. The
ViewModel separates the presentation logic from the UI and the data access logic. This makes
the code more maintainable and allows for easier testing and refactoring.

As an example, you could have a MainViewModel class that has a single property called UserName.
The UserName property could be bound to TextBox in the View. MainViewModel could also
have a command called SendGreeting that is bound to a button in the View. When the user clicks
the button in the View, the command would check if the action to send a greeting can be executed,
and if it can, then the user will be greeted with a message.

Creating the project 385

Remember that MVVM is just one architectural pattern, and the details may vary based on the specific
framework or library you are using (for example, WPF or Xamarin.Forms). In our case, we are using MAUI.

Adding MainViewModel

In this section, we will be adding the ViewModel for our MainPage. It will check for internet connectivity
and delete completed to-do items. It will also handle navigation to the details page.

Create a folder called ViewModel and add the MainViewModel class to it. Add the following
using statements to the class:

using CommunityToolkit.Mvvm.ComponentModel;
using CommunityToolkit.Mvvm.Input;
using System.Collections.ObjectModel;

Make the class partial and make it inherit from ObservableObject:

public partial class MainViewModel : ObservableObject
{
}

The ObservableObject class from the CommunityToolkit.Mvvm NuGet package acts as
a base class for objects whose properties must be observable, and it contains implementations for
INotifyPropertyChanged and INotifyPropertyChanging.

By inheriting from the ObservableObject class, we don’t have to implement
INotifyPropertyChanged. Expand the class with the following code:

    readonly IConnectivity connectivity;

    public MainViewModel(IConnectivity connectivity)
    {
        Items = new();
        this.connectivity = connectivity;
    }

    [ObservableProperty]
    ObservableCollection<string> items;

    [ObservableProperty]
    string text;

Here, we are declaring an IConnectivity field that gets set in the constructor by the connectivity
object that’s passed into the constructor as a parameter. We are also declaring an observable property
called Items. The Item property is a CollectionsView under the hood. This is initialized when
the ViewModel is created. Plus, we have added an observable property called Text.

Cross-Platform Application Development with MAUI386

Now, we need to add our relay commands. Add the first RelayCommand, called Add:

[RelayCommand]
async Task Add()
{
    if (string.IsNullOrWhiteSpace(Text))
        return;

    if (connectivity.NetworkAccess != NetworkAccess.Internet)
    {
        await Shell.Current.DisplayAlert("Internet Connectivity
Issue", "You have no internet connectivity.", "OK");
        return;
    }

    Items.Add(Text);

    Text = string.Empty;
}

The Add method executes asynchronously. As RelayCommand, the Add method will not execute
if the observable Text property is null or white space and if there is no internet connectivity. If we
have no internet connectivity, then we will be presented with an alert message. If the checks pass, the
text contained within the Text property is added to the Items collection, and the Text property
is cleared.

Now, add the Delete command:

[RelayCommand]
private void Delete(string s)
{
    if (Items.Contains(s))
        Items.Remove(s);
}

Our Delete method takes a string, checks if it is contained within the Items collection, and then
removes it from the collection. Finally, add our Tap command:

[RelayCommand]
async Task Tap(string s)
{
    await Shell.Current.GoToAsync($"{nameof(DetailPage)}?Text={s}");
}

Creating the project 387

This asynchronous command will execute when our button is clicked or tapped. It navigates us to
DetailPage. That’s it for our MainViewModel – now, let’s add our details page ViewModel.

Adding DetailsViewModel

In the ViewModel folder, add the partial class property called DetailsViewModel that
inherits from the ObservableObject class, and add the QueryProperty attribute. The class
will have an observable property called Text, and a RelayCommand property called GoBack():

[QueryProperty("Text", "Text")]
public partial class DetailViewModel : ObservableObject
{
    [ObservableProperty]
    string text;

    [RelayCommand]
    async Task GoBack()
    {
        await Shell.Current.GoToAsync("..");
    }
}

DetailViewModel will receive a string parameter that contains the string of the selected to-do
item that we wish to view. The parameter can be obtained from QueryProperty, which has two
string parameters for name and id. The GoBack method takes us back to our main page.

Now, we can start working on our views.

The views

In our project, we will have two views. The MainPage view will contain our text to add and remove
tasks and to view them in a list. Clicking on the to-do item will take us to DetailsPage. This page allows
us to view the detailed view of the to-do item. From the DetailsPage view, we can navigate backward
to the MainPage view. Let’s start by modifying the MainPage view.

Modifying the MainPage view

Our MainPage view will need to access MainViewModel, which we created earlier. We need to
update the ContentPage tag in the XAML as follows:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
             xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
             xmlns:vm="clr-namespace:CH13_MAUI.ViewModel"
             x:DataType="vm:MainViewModel"
             x:Class="CH13_MAUI.MainPage">

Cross-Platform Application Development with MAUI388

As you can see, we added the CH13_MAUI.ViewModel namespace with the vm: prefix. This lets
the view know where to find our ViewModels. Then, we added the MainViewModel data type. This
lets the View know which ViewModel to bind to.

Next, we need to start building the visual aspects of the page. We will use a grid to lay out our
components on the screen:

<Grid RowDefinitions="100, Auto, *"
      ColumnDefinitions=".75*, .25*"
      Padding="10"
      RowSpacing="10"
      ColumnSpacing="10">
</Grid>

This XAML produces a grid with three rows and two columns. The first row’s height is fixed at 100.
The second row’s height will be set to the height of the highest component. The last row will expand
to fill the remaining space. The columns are set to 75% and 25%, respectively. To make our layout look
nice, we must space the rows and columns by 10 and add padding within the cells of 10.

Now, we will add the banner section in between the grid tags:

<StackLayout Margin="20"
             Orientation="Horizontal"
             HorizontalOptions="Center">
    <Image Source="task_list.png"
           BackgroundColor="Transparent" />
    <Label Text="To-Do List"
           VerticalTextAlignment="Center"
           FontSize="55"/>
</StackLayout>

We use StackLayout with horizontal orientation and a margin of 20 to display our centered
banner at the top of our screen. Within our stack panel is an image that contains our logo and a label
that contains our banner text.

The next few items we need to add are our Entry for adding a task and a button to save it. We will
add them after StackLayout:

<Entry Placeholder="Enter Task"
       Grid.Row="1"
       Text="{Binding Text}"/>
<Button Text="Add"
        Grid.Row="1"
        Grid.Column="1"
        Command="{Binding AddCommand}"/>

Creating the project 389

The Entry control has placeholder text to alert the user as to where they can enter the task text. It is
bound to a property called Text and is placed on the second row in the first column. The button has
the text Add and is placed in the second row and column, and it is bound to AddCommand.

We need somewhere to store our collection. For this, we’ll use CollectionView, which we’ll place
after the button:

<CollectionView Grid.Row="2"
                Grid.ColumnSpan="2"
                ItemsSource="{Binding Items}"
                SelectionMode="None">
    <CollectionView.ItemTemplate>
        <DataTemplate x:DataType="{x:Type x:String}">
            <Grid Padding="0, 5" ColumnDefinitions=".75*, .25*" Col-
umnSpacing="10">
                <Frame>
                    <Frame.GestureRecognizers>
                        <TapGestureRecognizer Command="{Bind-
ing Source={RelativeSource AncestorType={x:Type vm:MainViewMod-
el}},Path=TapCommand}"
  CommandParameter="{Bind-
ing .}">

                        </TapGestureRecognizer>
                    </Frame.GestureRecognizers>
                    <Label Text="{Binding .}"
                           FontSize="24" />
                </Frame>
                <Button Text="Delete"
                        Grid.Column="2"
                        Command="{Binding Source={RelativeSource An-
cestorType={x:Type vm:MainViewModel}},Path=DeleteCommand}"
                        CommandParameter="{Binding .}" />
            </Grid>
        </DataTemplate>
    </CollectionView.ItemTemplate>
</CollectionView>

The items we add will be stored and displayed within CollectionView. It binds to the Items
property. Our ItemTemplate contains DataTemplate. Within DataTemplate, our view
consists of a label to display our item text and a delete button to delete our to-do item that binds to
DeleteCommand. We use TapGestureRecognizer to bind to our TapCommand, which will
navigate to the details page.

Cross-Platform Application Development with MAUI390

That’s our XAML sorted. Now, we need to add the code in the code-behind file:

using CH13_MAUI.ViewModel;

namespace CH13_MAUI;

public partial class MainPage : ContentPage
{
    public MainPage(MainViewModel vm)
    {
        InitializeComponent();
        BindingContext = vm;
    }
}

We reference our ViewModel namespace, inject MainViewModel into our view, and then bind
MainViewModel to our BindingContext. This will need to be registered to work; we will do
this later.

Now that we’ve completed the MainView, it is time to add and work on the DetailPage view.

Adding the DetailPage view

There is not much to our DetailPage view. All it does is display the selected to-do item and then
navigate back to the MainView view. Start by adding the DetailPage view to the root of your project.
Then, modify the XAML, as follows:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
             xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
             xmlns:vm="clr-namespace:CH13_MAUI.ViewModel"
             x:DataType="vm:DetailViewModel"
             x:Class="CH13_MAUI.DetailPage"
             Title="DetailPage">
    <VerticalStackLayout>

        <Label
            Text="{Binding Text}"
            FontSize="25"
            VerticalOptions="Center"
            HorizontalOptions="Center" />

        <Button Text="Go Back"
                Command="{Binding GoBackCommand}" />

Creating the project 391

    </VerticalStackLayout>
</ContentPage>

Here, we reference our ViewModel namespace and bind to DetailViewModel. Our UI uses
VerticalStackLayout to display a label bound to the Text property and a button bound
to GoBackCommand.

Now, let’s update the code-behind, as follows:

using CH13_MAUI.ViewModel;

namespace CH13_MAUI;

public partial class DetailPage : ContentPage
{
    public DetailPage(DetailViewModel vm)
    {
        InitializeComponent();
        BindingContext = vm;
    }
}

Here, we are injecting DetailViewModel using constructor injection and assigning the ViewModel
to BindingContext.

Now, all we need to do is configure our to-do application so that it works.

Configuring our to-do application

We need to ensure that we register our Views and ViewModels so that our Connectivity class,
MainPage, and MainPageViewModel only use single instances. Our DetailsPage view and
DetailsViewModel are transient, meaning they are created and destroyed each time we use them.

Update the builder.services section, as shown here:

builder.Services.AddSingleton<IConnectivity>(Connectivity.Current);
builder.Services.AddSingleton<MainPage>();
builder.Services.AddSingleton<MainViewModel>();
builder.Services.AddTransient<DetailPage>();
builder.Services.AddTransient<DetailViewModel>();

This code allows our ViewModels to be injected into the constructors of our Views. Our very last task
is to register the route of our DetailView view. Add the following line to the AppShell constructor
after the InitailizeComponent call:

Routing.RegisterRoute(nameof(DetailPage), typeof(DetailPage));

Cross-Platform Application Development with MAUI392

This line registers the route of the DetailsView view, enabling us to navigate to it from the MainPage view.

You should now be able to run the program and observe the same screens that you were shown earlier.

As a learning exercise, you could update the DetailPage view so that it has more items for the to-do
that you can set and update against the CollectionView item.

That’s it for this chapter, as well as this book. So, let’s review what we have learned.

Summary
In this chapter, you learned how to write a single application in a single project that targets mobile devices
such as phones and tablets, as well as desktops and laptops. You learned how to write one application
and deploy it to multiple platforms and operating systems, such as Windows, Linux, macOS, Tizen,
iOS, and Android. Now, using MAUI, you can write an application once and deploy it everywhere.

Then, we walked through the screens for our to-do application, which are written in MAUI for both
Windows and Android. You saw how we can use Hot Reload to view changes to the UI while it is
running on both Android and Windows, speeding up UI development.

We used the MVVM architecture to show how you can separate the View from the ViewModel and
Model, binding to properties and commands to make the application responsive in real time.

Finally, you saw how easy it is to configure routes and services so that we can inject our ViewModels
into the constructors of our Views, assigning them to BindingContext.

When coding, because we are using NuGet’s CommunityToolkit.MVVM package, you saw how we
were able to reduce the amount of boilerplate code we need by inheriting from ObservableObject,
and how easy it was to create ObservableProperty and RelayCommand.

Going forward with your UI development, you are now knowledgeable of how to write an application
using XAML and C# that targets multiple devices and multiple platforms with different operating systems.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 What is .NET MAUI?

2.	 What is the MVVM pattern and why should we use it with .NET MAUI?

3.	 What is CommunityToolkit.Mvvm, and what benefits does it bring in terms of clean
coding in .NET MAUI?

4.	 How do we configure routes in .NET MAUI?

5.	 How do we register ViewModels to make them available for constructor injection?

6.	 What do we assign the ViewModel to in our View constructors?

Further reading 393

7.	 What is ObservableObject?

8.	 What is ObservableProperty?

9.	 What is RelayCommand?

10.	 What is CollectionView?

11.	 What is ObservableCollection?

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 Learn to Build Multi-Platform Apps with .NET MAUI: This book guides C# developers through
the process of creating cross-platform applications using .NET MAUI. You’ll discover how
to maintain consistent and beautiful user interfaces across various platforms, enhance your
C# skills, and follow best practices for Microsoft’s .NET MAUI. Starting with the basics, this
book progresses to intermediate and advanced topics, covering page layout, navigation, data
gathering, and the Model-View-ViewModel architecture. You’ll also master unit testing using
xUnit and NSubstitute. By the end, you’ll be proficient in using .NET MAUI and creating a C#
API for seamless interaction between your app and web frontends.

•	 .NET Multi-Platform App UI: https://dotnet.microsoft.com/en-us/apps/maui.

•	 MVVM Pattern on Microsoft Learn: https://learn.microsoft.com/en-us/
dotnet/architecture/maui/mvvm.

•	 Enterprise Application Patterns Using .NET MAUI: https://dotnet.microsoft.
com/download/e-book/maui/pdf..

https://dotnet.microsoft.com/en-us/apps/maui
https://learn.microsoft.com/en-us/dotnet/architecture/maui/mvvm
https://learn.microsoft.com/en-us/dotnet/architecture/maui/mvvm
https://dotnet.microsoft.com/download/e-book/maui/pdf
https://dotnet.microsoft.com/download/e-book/maui/pdf

14
Microservices

In this chapter, we’ll cover microservices. Microservices are a modular architectural approach to
building software applications where an application is developed as a collection of small, independent,
and loosely coupled services that communicate with each other through well-defined APIs. This
contrasts with traditional monolithic architectures, where the entire application is tightly integrated.

Microservices offer numerous benefits, including enhanced scalability, agility, and fault isolation,
allowing organizations to develop, deploy, and maintain complex applications more efficiently. By
breaking down applications into smaller, more manageable components, microservices enable teams
to independently develop, test, deploy, and scale different parts of the application, fostering faster
innovation and adaptability to evolving business needs.

In this chapter, we will be covering the following topics:

•	 What are microservices?

•	 Service registration and discovery

•	 Containerization and orchestration of microservices

•	 API gateways

•	 Event-driven communication

•	 Service resilience and fault tolerance

•	 Service monitoring and observability

•	 Security

•	 Scaling microservices

•	 Versioning and compatibility

•	 Microservice best practices and anti-patterns

•	 Case studies and real-world examples

Microservices396

By the end of this chapter, you will be able to do the following:

•	 Explain what microservices are and compare them to monoliths

•	 Understand the pros and cons of microservices

•	 Explain all the steps that are involved in designing microservices and managing their life cycle

•	 Explain what containerization and orchestration are and how they help to develop, deploy, and
manage microservices at scale along with CI and CD

•	 Explain what API gateways are, why they are useful, and the benefits of using
event-driven communication

•	 Explain how you can implement different forms of service monitoring and observability and
the different ways you can handle security in microservices

•	 Explain how you can test, version, and scale your microservices and ensure compatibility
between versions

•	 Understand and implement best practices while avoiding anti-patterns

•	 Explain how some companies used microservices to improve the delivery of their business
models to clients

What are microservices?
As mentioned in the introduction, microservices are a software architectural style that structures an
application as a collection of small, independent, and loosely coupled services, each running in its
own process and communicating through well-defined APIs. The core idea behind microservices is to
break down a complex application into smaller, more manageable components that can be developed,
deployed, and scaled independently. This approach aims to improve agility, scalability, maintainability,
and fault tolerance in large and complex systems.

Here’s a more detailed, language-agnostic description of microservices and how they are used:

•	 Decomposition: In the initial phase, the monolithic application is decomposed into smaller,
specialized services based on business capabilities. Each microservice focuses on performing
a specific task or function within the application. This division allows developers to work on
separate code bases, making it easier to understand and maintain the system.

•	 Independence: Microservices are designed to be loosely coupled, meaning they can function
independently of one another. Each service has its own database (if necessary) and operates
independently of the internal workings of other services. This isolation allows teams to develop,
test, and deploy services separately, reducing the risk of impacting the entire system with
changes to one service.

What are microservices? 397

•	 API-based communication: Microservices communicate with each other through well-defined
APIs, typically over lightweight protocols such as HTTP/REST or messaging systems such as
Google GRPC, RabbitMQ, or Kafka. API contracts act as a contract between services, ensuring
that they can interact without breaking each other.

•	 Technology diversity: Since microservices are independent, each service can be developed
using different technologies, programming languages, and frameworks, so long as they adhere
to the API specifications. This flexibility allows teams to choose the best tools for each specific
service, enabling them to optimize performance and development speed.

•	 Scalability: Microservices enable horizontal scaling, allowing individual services to be
replicated and deployed across multiple servers or containers. This way, resources can be
allocated efficiently based on the specific needs of each service, ensuring optimal performance
and resource utilization.

•	 Resilience and fault tolerance: Failure in one microservice does not bring down the entire
system. Microservices are designed to handle failures gracefully and recover quickly, promoting
overall system resilience.

•	 Continuous deployment: With microservices, it becomes easier to adopt continuous deployment
practices. Changes in one service can be tested and deployed independently without impacting
other parts of the application. This promotes faster development cycles and shorter time-to-market.

•	 Team autonomy: Microservices encourage organizational structure based on small, cross-
functional teams, each responsible for one or more microservices. This autonomy allows teams
to innovate and iterate faster, making decisions that best suit their specific service without being
hindered by a centralized decision-making process.

•	 Monitoring and observability: With microservices, it is essential to have comprehensive
monitoring and logging in place to track the performance and health of each service. Various
tools and techniques can be employed to gain insights into system behavior and performance.

•	 Complexity management: While microservices offer numerous benefits, they also introduce
some challenges, such as managing distributed systems, inter-service communication, and
service discovery. Proper architectural and operational patterns must be employed to address
these complexities effectively.

In summary, microservices are a powerful architectural approach that offers several advantages for
building large, scalable, and maintainable applications. By breaking down complex systems into smaller,
independent services, organizations can foster a more agile and resilient software development process,
providing flexibility and better adaptability to rapidly changing business requirements. However,
adopting microservices requires careful planning, architectural design, and the right organizational
culture to achieve the full benefits while mitigating potential challenges.

Microservices398

The downsides of microservices, some gotchas experienced by
microservices, and how they can be overcome and avoided

While microservices offer several advantages, they also come with their own set of challenges and
downsides. Here are some common downsides and gotchas that are experienced by microservice
developers, along with ways to overcome and avoid them:

•	 Increased complexity: Microservices introduce a higher level of complexity compared to
monolithic architectures. Managing distributed systems, inter-service communication, and
service discovery can be challenging. Additionally, handling eventual consistency across services
can become more complex.

	� Mitigation: Proper architectural patterns, such as the use of API gateways, service meshes,
and event-driven architectures, can help you manage the complexity. Adopting well-defined
communication protocols, asynchronous messaging, and centralized logging and monitoring
systems can make debugging and monitoring easier.

•	 Operational overhead: Running and managing multiple microservices requires more operational
effort than managing a single monolithic application. Each service must be deployed, monitored,
and maintained independently.

	� Mitigation: Embracing containerization technologies such as Docker and container
orchestration platforms such as Kubernetes can help automate deployment and scaling tasks.
CI/CD pipelines can streamline the release process and reduce manual overhead.

•	 Data management complexity: Data management becomes more complex when each
microservice has its own database. Ensuring data consistency and handling distributed
transactions can be challenging.

	� Mitigation: Consider using different data storage patterns, such as the Saga pattern, Command
Query Responsibility Segregation (CQRS), and event sourcing, to manage data consistency
across services. Also, explore the use of distributed databases or a combination of centralized
and decentralized data management approaches.

•	 Service dependencies and latency: Microservices often rely on each other, leading to dependencies
between services. This can introduce latency and increase the chances of cascading failures.

	� Mitigation: Strive for clear service boundaries and minimize direct synchronous dependencies.
Implement caching mechanisms and consider asynchronous communication where possible.
Implement circuit breakers and fallback mechanisms to handle service unavailability gracefully.

What are microservices? 399

•	 Testing challenges: Testing microservices can be complex due to the need to set up and manage
a network of interconnected services. Integration testing and end-to-end testing may require
significant effort.

	� Mitigation: Adopt contract testing, where service interfaces are tested independently to ensure
compatibility. Use mock services or test doubles during unit testing to isolate components
and reduce dependencies. Embrace test automation to streamline the testing process.

•	 Versioning and compatibility: As microservices evolve independently, maintaining backward
compatibility between services can become challenging. Changes in one service may break the
functionality of dependent services.

	� Mitigation: Implement versioning in APIs and follow the principles of backward compatibility.
Use API versioning techniques, such as URL versioning or versioning through custom
request headers. Also, establish strong communication channels between teams to coordinate
changes and align on API contracts.

•	 Security concerns: Securing microservices and managing access control can be more intricate,
especially with numerous independently deployed services.

	� Mitigation: Implement security at various layers of the application, including communication
channels (for example, SSL/TLS), authentication, and authorization mechanisms. Use API
gateways with built-in security features, such as rate limiting and token validation. Regularly
audit and update security measures to address emerging threats.

•	 Resource management: Microservices can lead to increased resource consumption, especially
when each service is provisioned with its own resources.

	� Mitigation: Adopt resource monitoring and autoscaling strategies to optimize resource usage
based on actual demand. Implement efficient resource allocation and utilization policies to
prevent overprovisioning.

•	 Organizational challenges: Transitioning from a monolithic to a microservices-based architecture
can lead to organizational challenges, such as creating and managing small, cross-functional
teams and adopting DevOps practices.

	� Mitigation: Foster a culture of collaboration and communication between teams. Encourage
knowledge sharing and invest in proper training for team members. Gradually transition from a
monolithic approach to a microservices approach, allowing teams to adapt and learn along the way.

While microservices offer numerous benefits, their adoption comes with certain downsides and
complexities that need to be managed carefully. By understanding these challenges and adopting
appropriate architectural patterns and best practices, developers can overcome the gotchas associated
with microservices and build scalable, resilient, and maintainable systems. It’s crucial to strike a balance
between the benefits and challenges of microservices and ensure that the chosen architecture aligns
with the specific needs and constraints of the project and the organization.

Microservices400

Comparison between microservices and monoliths

Microservices and monoliths are two architectural patterns that are used in software development. Each
has its strengths and weaknesses, and the choice between them depends on the specific requirements
and complexities of a project. Let’s compare microservices and monoliths in various aspects:

•	 Architecture:

	� Monolith: In a monolithic architecture, the entire application is built as a single, cohesive
unit. All components and functionalities are tightly integrated, and the application typically
runs on a single server or set of servers.

	� Microservices: In a microservices architecture, the application is broken down into small,
independent services, each responsible for a specific business capability. These services
can be developed, deployed, and scaled independently, communicating through APIs or
message queues.

•	 Scalability:

	� Monolith: Scaling a monolithic application can be challenging since all components are
tightly coupled. To scale the application, you often have to scale the entire monolith, which
may not be cost-effective and might lead to resource wastage.

	� Microservices: Microservices can be scaled independently based on their requirements.
This allows for more efficient resource utilization and the ability to handle varying
workloads effectively.

•	 Development and deployment:

	� Monolith: In a monolith, development and deployment are relatively straightforward since
the entire application is contained within a single codebase. However, this can lead to longer
build times and more complex deployments, especially as the application grows.

	� Microservices: Microservices enable faster development and deployment cycles as each
service can be worked on independently. This approach allows for smaller, more focused
development teams and easier CI/CD practices.

•	 Maintenance and updates:

	� Monolith: Updating a monolithic application requires deploying the entire application,
which can be risky if something goes wrong during the deployment process.

	� Microservices: In microservices, updating individual services is easier but comes with
risks. Developers can update one service without affecting the others, allowing for more
flexibility in maintaining and evolving the application. However, it is possible to break
version compatibility.

The design process for building successful microservices 401

•	 Complexity and understanding:

	� Monolith: A monolithic code base can become complex and challenging to understand
as the application grows. It might be difficult for developers to isolate and comprehend
specific functionalities.

	� Microservices: Microservices promote better code organization and encapsulation of
functionalities. Each service has a clear purpose, making it easier for developers to understand
and maintain their respective services.

•	 Communication overhead:

	� Monolith: In a monolithic architecture, components can communicate more efficiently
since they are often within the same process. Direct function calls or method invocations
are common.

	� Microservices: In microservices, inter-service communication usually occurs over the network
through APIs or message brokers, which can introduce some communication overhead.

•	 Fault isolation and resilience:

	� Monolith: In a monolith, if one component fails, it can potentially bring down the entire
application. If a single component goes rogue (such as using all the CPU), the entire application
is affected. This is probably the most problematic issue with monoliths.

	� Microservices: Microservices offer better fault isolation as the failure of one service does
not necessarily affect others. This enhances the overall resilience of the application.

Ultimately, the choice between microservices and monoliths depends on factors such as the size and
complexity of the project, the development team’s expertise, scalability requirements, and the level of
modularity desired. Some projects might benefit from starting as a monolith and gradually transitioning
to microservices as the application grows and demands more flexibility and scalability. Others might find
microservices to be the preferred approach from the start, especially for complex and distributed systems.

The design process for building successful microservices
Designing successful microservices involves careful planning, architecture, and development. Here
is a step-by-step guide to the design process for building successful microservices:

1.	 Identify business goals: Understand the business requirements and goals. Identify the
functionalities that need to be broken down into separate services. Focus on the core competencies
and domains that require microservices architecture.

2.	 Decompose the monolith: If you are migrating from a monolithic architecture, analyze the
existing application and identify modules that can be decoupled into independent services.
These modules can be good candidates for microservices.

Microservices402

3.	 Domain-driven design (DDD): Apply DDD principles to divide your system into bounded
contexts, each representing a specific domain. These bounded contexts will be the foundation
for defining your microservices.

4.	 Service boundaries: Define clear boundaries for each microservice. Aim for high cohesion
within each service and minimize coupling between services. This helps in maintaining
autonomy and scalability.

5.	 API design: Design a well-defined and versioned API for each microservice. Keep the API contracts
as simple and stable as possible to minimize dependencies on internal implementation details.

6.	 Database per service: Adopt the database-per-service pattern, where each microservice has its
own dedicated database. This ensures data isolation and reduces the risk of data inconsistencies.

7.	 Communication: Decide how the microservices will communicate with each other. Use
lightweight protocols such as RESTful APIs or message queues for asynchronous communication.
Avoid direct database access between services to maintain independence.

8.	 Security: Implement robust security measures, including authentication and authorization,
for each microservice. Consider using API gateways for centralized security management.

9.	 Resilience: Build resilience into your microservices by incorporating retries, timeouts, and
circuit breakers. Handle failures gracefully and ensure the system can recover from faults.

10.	 Monitoring and logging: Implement comprehensive monitoring and logging mechanisms
for each microservice. This enables better visibility into the system’s health and helps in
diagnosing issues.

11.	 Scalability: Design for horizontal scalability to accommodate changes in demand. Consider
containerization with tools such as Docker and container orchestrators such as Kubernetes to
manage scalability effectively.

12.	 Testing strategy: Develop a testing strategy that includes unit testing, integration testing, and
end-to-end testing for the microservices. Automate tests to ensure consistency and reliability.

13.	 Deployment and continuous delivery: Set up a CI/CD pipeline to automate the deployment
process. This ensures a smooth and efficient release of new features and bug fixes.

14.	 Performance optimization: Continuously monitor the performance of your microservices and
optimize bottlenecks. Load testing and performance tuning are essential to handle real-world usage.

15.	 Team structure and ownership: Organize development teams around microservices to promote
ownership and accountability. Each team should be responsible for the design, development,
and maintenance of their respective microservices.

16.	 Documentation and communication: Document the architecture, APIs, and design decisions
thoroughly. Effective communication between teams is crucial for successful collaboration.

17.	 Evolution and adaptation: Be prepared to adapt and evolve your microservices architecture
as the system grows and requirements change. Embrace a culture of continuous improvement.

The application life cycle management (ALM) of microservices 403

18.	 Versioning: Application programming interface (API) versioning is a crucial aspect of the
design process that involves establishing a strategy to manage changes and updates to an API
over time. During the design phase, developers need to carefully consider how the API will
evolve to accommodate future enhancements, bug fixes, or changes in requirements without
disrupting existing clients. There are various versioning approaches, such as URI versioning,
header versioning, or query parameter versioning, each with its advantages and considerations.
It’s essential to choose a versioning strategy that aligns with the project’s needs, provides
backward compatibility, and communicates changes clearly to API consumers. Thoughtful API
versioning ensures that developers can make improvements while maintaining a stable and
predictable interface for those relying on the API, fostering long-term usability and minimizing
disruptions during updates.

By following these steps and considering the specific needs of your project, you can design and
build successful microservices that enable scalability, maintainability, and rapid development of
complex applications.

The application life cycle management (ALM) of
microservices
ALM in the context of microservices refers to the process of managing the entire life cycle of
microservices-based applications, from their initial design and development to deployment, operation,
and eventual decommissioning. ALM encompasses various stages and activities that ensure the smooth
functioning and continuous improvement of the microservices architecture. Here’s a breakdown of
the microservices that ALM processes:

•	 Design and development:

	� In this stage, the microservices architecture is planned and designed based on the specific
requirements of the application.

	� Services are defined, and their boundaries are established using DDD principles.

	� Development teams work on individual microservices, implementing them independently
using the programming language and technology stack that suits each service best.

	� Collaboration among teams is crucial to ensure seamless integration and compatibility
between services.

	� A mock version of the service should be created to provide a simple working version of the
service for testing the API interface. A strict API reference is the key to success. A minimal
implementation of that API (without any validation or real business logic) is the key to survival.

Microservices404

•	 Testing and quality assurance:

	� Each microservice is thoroughly tested at various levels: unit testing, integration testing,
and end-to-end testing

	� Automated testing is emphasized to ensure quick and reliable feedback during continuous
integration processes

	� Quality assurance teams validate the overall functionality and performance of the
microservices application

•	 Versioning and source control:

	� The source code of each microservice is managed using version control systems such as Git

	� Proper versioning is maintained to track changes and ensure backward compatibility when
updates are made

•	 Containerization and orchestration:

	� Microservices are containerized using technologies such as Docker, enabling them to be
portable and scalable

	� Container orchestration platforms such as Kubernetes are used to manage and automate
the deployment, scaling, and operation of containers

•	 CI/CD:

	� CI/CD pipelines are established to automate the build, testing, and deployment processes

	� Changes to microservices are automatically built, tested, and deployed to production
environments, promoting a faster and more reliable release cycle

•	 Monitoring and observability:

	� Monitoring tools are set up to collect metrics, logs, and traces from microservices

	� Observability ensures that developers and operations teams can gain insights into the
application’s behavior and troubleshoot issues effectively

•	 Scalability and load management:

	� As the application grows, microservices can be horizontally scaled to handle increased
traffic and load

	� Load balancing mechanisms distribute incoming requests evenly across multiple instances
of services

Microservice architecture patterns 405

•	 Security and access control:

	� Robust security measures are implemented to ensure secure communication
between microservices

	� Access control and authentication mechanisms are enforced to prevent unauthorized access

•	 Fault tolerance and resilience:

	� Microservices are designed to be resilient in the face of failures

	� Techniques such as circuit breakers, retries, and graceful degradation are employed to handle
faults and prevent cascading failures

•	 Version upgrades and retirement:

	� When a new version of a microservice is released, strategies such as blue-green deployments
or canary deployments are used to minimize downtime and risks.

	� Microservices that are no longer needed are retired and decommissioned from the system.

	� For mission-critical microservices, the ability to run actual and future versions side by side
is a real technical challenge but gives you a real lifesaver approach where you can deploy
the Actual version +1, keep in parallel with the old version, redirect some of the calls on the
new version, wait for everything to be ok, and then gradually redirect the call to the new
application until no call is made to the Actual version. This can then be redirected and the
Actual version is increased.

•	 Continuous improvement:

	� Feedback from users and monitoring data helps identify areas for improvement

	� Regular retrospectives and post-mortems enable teams to learn from incidents and enhance
the system continuously

The ALM process in microservices is ongoing and iterative, ensuring that the application remains reliable,
scalable, and maintainable throughout its life cycle. It requires collaboration between development,
operations, and quality assurance teams, as well as the adoption of automation and DevOps practices
to streamline the entire process.

Microservice architecture patterns
Microservices architecture is an approach to software development that structures an application as
a collection of loosely coupled and independently deployable services. Each service in the system
represents a specific business capability and can be developed, deployed, and scaled independently.

Microservices406

This architecture promotes flexibility, scalability, and easier maintenance of complex applications.
To design and implement microservices effectively, developers commonly use various architectural
patterns. Here are some of the most commonly used microservices architecture patterns:

•	 Service registry and discovery: In a microservices environment, services are often distributed
across multiple servers. The service registry pattern involves a central service registry that
maintains a list of available services and their locations (endpoints). Service instances register
themselves with the registry, and other services can discover their locations dynamically using
the registry. This pattern helps facilitate communication between services as each service doesn’t
need to know the exact location of others beforehand.

•	 API gateway: An API gateway acts as a single entry point for clients to access various microservices.
It handles API requests and performs authentication, routing, load balancing, and other
cross-cutting concerns. By centralizing these tasks, the API gateway simplifies the client-side
interaction and reduces the complexity of microservices client implementations. When a team
implements a microservice, they should not have the burden of implementing authentication,
parsing input for security, and so on, and an API gateway allows you to isolate the caller from
the real structure of the service behind the gateway.

•	 Circuit Breaker: The Circuit Breaker pattern is used to prevent cascading failures in a
microservices system. When a service fails, the circuit breaker temporarily stops calling that
service and returns an error response. This avoids overwhelming the failing service and allows
it to recover. The circuit breaker monitors the service’s status, and if it detects that the service is
healthy again, it closes the circuit, enabling requests to flow through. The .NET Polly library is
worth using in your microservices. For example, when calls to a database fail, Polly will retry
the call many times until it either succeeds or decides to fail gracefully.

•	 Event sourcing: Event sourcing is a pattern where the state of a system is derived from a sequence
of events rather than maintaining a current state. Events represent changes that have occurred
in the system and are stored in an event log. This approach enables auditing, debugging, and
reconstruction of past states, making it suitable for certain types of applications, such as financial
systems. Event sourcing can be used with both microservices and monoliths.

•	 CQRS: CQRS separates the read and write operations of an application into two different
models. The write model handles commands that change the state of the system, while the read
model is optimized for querying and retrieving data. This pattern can improve performance
and scalability as read and write operations have distinct and independent requirements. Event
sourcing can be used with both microservices and monoliths.

•	 Saga pattern: The Saga pattern is used to manage distributed transactions in a microservices
architecture. A distributed transaction involves multiple services cooperating to achieve a
single business operation. Sagas are sequences of local transactions, each of which updates the
database and publishes events or commands to trigger subsequent actions in other services.
If something goes wrong during a saga, compensating actions can be triggered to undo the
changes made so far.

Service registration and discovery 407

•	 Bulkhead pattern: The Bulkhead pattern isolates different parts of a system to prevent failures
in one component from affecting the entire system. It involves breaking the system into multiple
isolated sections (bulkheads) with separate resources (threads, databases, and so on) to limit
the impact of failures and improve fault tolerance.

•	 Choreography and orchestration: These patterns define how services interact and collaborate
in a microservices ecosystem. Choreography implies that services communicate directly with
each other using events or messages. Orchestration, on the other hand, involves a central service
(orchestrator) that coordinates the interactions between services.

•	 Polyglot Persistence: In microservices, different services may have varying data storage
requirements. The Polyglot Persistence pattern allows each service to choose the most appropriate
data storage technology for its specific needs, enabling a diverse range of databases or storage
systems in the overall architecture.

•	 Feature Toggle: The Feature Toggle pattern is used to enable or disable specific features in a
microservices system without redeploying the entire application. It allows developers to release
new features gradually or roll back features quickly if issues are discovered.

These are just a few examples of the many microservices architecture patterns available. Developers
may choose different combinations of patterns based on the specific requirements and characteristics
of their applications. The key is to design a system that is modular, scalable, and easy to maintain
and update.

Service registration and discovery
Service discovery and registration are essential components of a microservices architecture that enable
services to locate and communicate with each other in a dynamic and distributed environment. They
facilitate the seamless interaction between services without the need for hardcoded configurations or
static IP addresses. Let’s dive deeper into each concept.

Service discovery

Service discovery is the process by which services within a microservices architecture can dynamically
find and identify other services that they need to interact with. In a traditional monolithic application,
service locations may be hardcoded or configured statically. However, in a microservices environment,
where services can be added, removed, or scaled independently, this static approach becomes impractical.

Service discovery involves a central component known as the “Service Registry,” which acts as a
directory of available services and their network locations (IP addresses and ports). Each microservice
registers itself with the Service Registry upon startup, indicating its presence, capabilities, and location.
Likewise, services can deregister themselves when they shut down or become unavailable.

Microservices408

When a microservice needs to communicate with another service, instead of relying on fixed IP
addresses or configuration files, it queries the Service Registry dynamically to obtain the location of
the desired service. The Service Registry then provides the IP address and port information, enabling
the requesting service to establish communication with the target service.

Service discovery allows the microservices architecture to be more flexible and scalable since services
can be added or removed without requiring changes to other service configurations. It also promotes
fault tolerance as the system can automatically adjust to changes in service availability.

Domain Name System (DNS) plays a crucial role in service discovery, providing an alternative to
relying solely on IP addresses and ports for microservices communication. In this context, DNS can
be leveraged to abstract away the underlying infrastructure details and enable a more dynamic and
scalable service discovery mechanism. By assigning meaningful domain names to microservices,
developers can use DNS to look up the locations of services within the network, reducing the need for
hardcoding IP addresses or port numbers in the application code. This approach is especially valuable
in distributed systems and microservices architectures where services may be deployed across multiple
servers or containers. Service discovery via DNS simplifies the configuration, enhances scalability,
and supports a more flexible and dynamic environment where microservices can be distributed across
servers while still being easily discoverable through their DNS-resolvable names.

Service registration

Service registration is the process by which a microservice announces its existence and availability to
the Service Registry. When a microservice starts up or becomes available, it registers itself with the
Service Registry, providing relevant information such as its service name, network location (IP address
and port), and any metadata that might be useful for other services (version, health status, and so on).

The act of service registration ensures that the Service Registry is up-to-date with the current status of
all services within the architecture. If a service goes offline or becomes unavailable, it can deregister
itself from the registry to reflect its unavailability accurately.

Service registration can be automatic or manual. In an automated approach, the service container or
runtime environment may handle the registration process. For example, when a service is deployed in
a containerized environment such as Kubernetes, the container can automatically register itself with
the associated Service Registry. In a manual approach, the service may explicitly call an API provided
by the Service Registry to register itself during startup.

Service discovery and registration play a crucial role in enabling the dynamic and flexible nature of
microservices architectures. They provide a mechanism for services to locate each other, communicate
effectively, and adapt to changes in the environment, making it easier to build and maintain complex
distributed systems.

Containerization and orchestration of microservices 409

Containerization and orchestration of microservices
Containerization and orchestration are two critical aspects of managing microservices in a scalable,
portable, and efficient manner. Let’s explore each concept in detail.

Containerization

Containerization is a technology that allows you to package an application, including its dependencies,
libraries, and configurations, into a single unit called a container. Containers provide a consistent
and isolated runtime environment for applications, ensuring that they run reliably and consistently
across different platforms, such as development, testing, and production environments.

The most popular containerization technology is Docker, but there are others, such as containerd,
rkt, and Podman. Docker containers use operating system-level virtualization to create isolated
environments that share the host operating system kernel. This approach makes containers lightweight
and faster to start and stop compared to traditional virtual machines.

In the context of microservices, each microservice can be containerized independently, encapsulating
all its dependencies, runtime, and configuration. This isolation ensures that each microservice can
run without interference from other services, promoting modularity and scalability.

Here are some of the benefits of containerization for microservices:

•	 Portability: Containers can run consistently across different environments, from a developer’s
local machine to production servers, without worrying about dependency conflicts

•	 Isolation: Each microservice runs in its own container, preventing dependency clashes and
ensuring that a failure in one service does not impact others

•	 Scalability: Containers can be easily replicated and scaled up or down based on demand and
how code is written, providing efficient resource utilization

•	 Easy deployment: Container images can be versioned and deployed with ease, simplifying
the CI/CD process

Orchestration

Orchestration refers to the automated management and coordination of containerized microservices
at scale. As the number of microservices and containers grows, manually managing them becomes
complex and error-prone. Orchestration tools help streamline this process by automating tasks such
as container deployment, scaling, networking, service discovery, and load balancing.

Some popular container orchestration platforms are Kubernetes, Docker Swarm, and Amazon Elastic
Container Service (ECS).

Microservices410

Kubernetes is widely used and one of the most feature-rich orchestration systems. It provides a set of
abstractions for defining the desired state of the system, and it continuously works to ensure that the
actual state matches the desired state. Here’s how Kubernetes helps manage microservices:

•	 Service deployment: Kubernetes allows you to define how many instances of each microservice
should be running, and it ensures the desired number is maintained.

•	 Service discovery: Kubernetes provides an internal DNS system that allows services to
discover each other using their names. This eliminates the need for hardcoding IP addresses
or service locations.

•	 Load balancing: Kubernetes automatically distributes incoming traffic across replicas of a
service, ensuring even load distribution.

•	 Auto-scaling: Kubernetes can automatically scale the number of containers based on CPU
utilization or other metrics, ensuring optimal resource utilization.

•	 Rolling updates and rollbacks: Kubernetes allows you to update microservices without
downtime by gradually replacing old containers with new ones. It also supports rolling back
to the previous version if issues arise; here, the code must be written with this pattern in mind.
Rolling back can be complex, so it needs to be planned for before rollout begins.

•	 Storage orchestration: Kubernetes provides options for managing persistent data for stateful
applications through persistent volumes and persistent volume claims.

Containerization and orchestration complement each other, making it easier to develop, deploy,
and manage microservices at scale. Containerization provides a consistent environment for running
microservices, while orchestration ensures that these containers are deployed, scaled, and managed
efficiently and automatically. This combination empowers organizations to build robust and scalable
microservices-based applications.

Serverless
Serverless computing is a significant aspect of the microservices landscape, offering a different paradigm
for building and deploying applications. Serverless platforms, such as AWS Lambda, Azure Functions,
and others, allow developers to focus on writing code without managing the underlying infrastructure.
Here are some key points related to serverless computing in the context of microservices:

•	 Event-driven architecture: Serverless platforms excel in event-driven architectures, where
functions (serverless units of code) are triggered by events such as HTTP requests, database
changes, or file uploads. This aligns well with microservices, enabling the creation of independent,
loosely coupled components that respond to specific events.

•	 Scalability and cost efficiency: Serverless platforms automatically scale functions based on
demand, providing a cost-efficient model where you pay only for the actual compute resources
consumed during execution. Microservices can benefit from this scalability, handling variable
workloads without the need for manual intervention.

API gateways 411

•	 Simplified deployment: Serverless platforms abstract away the deployment and management
of servers, simplifying the deployment process for microservices. Developers can deploy
individual functions without concerning themselves with the complexities of scaling and
provisioning infrastructure.

•	 Loose coupling: Serverless architecture encourages loose coupling between functions, promoting
the microservices principle of independence. Functions can be independently developed,
deployed, and scaled, reducing dependencies and allowing for better maintainability.

•	 Reduced operational overhead: Serverless platforms handle operational tasks such as patching,
maintenance, and server provisioning, freeing developers from low-level infrastructure
concerns. This aligns with the microservices philosophy of offloading operational complexity
to the platform.

•	 Rapid development and iteration: Serverless platforms facilitate rapid development and
iteration, allowing developers to quickly deploy and test changes to individual functions. This
agility aligns with the iterative and independent development approach of microservices.

While serverless computing complements the microservices approach, it’s important to note that it
may not be a one-size-fits-all solution. The choice between serverless and traditional microservices
architecture depends on factors such as workload characteristics, execution time, and specific use
case requirements. Combining the benefits of both approaches can lead to a powerful and flexible
application architecture.

API gateways
An API gateway is a central component in a microservices architecture that acts as an intermediary
between clients (such as web or mobile applications) and the backend microservices. It provides a
single entry point for clients to access various microservices and is responsible for handling requests,
routing, load balancing, security, and other cross-cutting concerns. The API gateway simplifies
client-side interactions and improves the overall performance, security, and manageability of the
microservices system.

Here are some key functions and benefits of an API gateway:

•	 API aggregation: In a microservices architecture, clients may need to interact with multiple
microservices to fulfill a single request. The API gateway can aggregate the necessary data from
multiple microservices and present it to the client as a single cohesive response, reducing the
number of API calls the client needs to make.

•	 Request routing: The API gateway routes incoming requests from clients to the appropriate
microservices based on the request’s URL, headers, or other criteria. This allows for clean and
logical URL structures on the client side while abstracting the complexities of the microservices’
actual endpoints.

Microservices412

•	 Load balancing: To ensure high availability and even distribution of incoming requests, the API
gateway can perform load balancing across multiple instances of the same microservice. This
helps distribute the workload efficiently and prevents any one instance from being overwhelmed.

•	 Caching: The API gateway can implement caching strategies to store responses from microservices
temporarily. This reduces the need for redundant calls to the same microservice for identical
requests, improving the overall response time and reducing the load on backend services.

•	 Security and authentication: The API gateway can handle authentication and authorization for
incoming requests. It can enforce authentication mechanisms such as API keys, OAuth, or JWT,
and validate the client’s credentials before forwarding the request to the appropriate microservices.
This centralizes security concerns and simplifies the authentication process across the microservices.

•	 Rate limiting: To prevent abuse or excessive usage, the API gateway can enforce rate-limiting
policies. It can restrict the number of requests a client can make within a specific time frame
to maintain fair usage of resources and protect the backend services from overloading.

•	 Transformation and response formatting: The API gateway can transform and modify responses
from microservices so that they match the expected format of the client. It can aggregate data,
filter unnecessary information, or merge responses from different microservices into a cohesive
format that suits the client’s needs.

•	 Monitoring and analytics: An API gateway can log incoming requests and responses, providing
valuable insights into usage patterns, error rates, and performance metrics. This information
helps in monitoring the health of the microservices system and identifying potential issues.

•	 Service versioning: The API gateway can support multiple versions of microservices, allowing
new versions to be rolled out without breaking backward compatibility for existing clients. This
facilitates seamless updates and migrations.

By providing a unified entry point and encapsulating various cross-cutting concerns, an API gateway
simplifies client-side development and improves the overall efficiency and reliability of microservices-
based applications. It enables teams to focus on developing individual microservices while ensuring
a consistent and secure experience for clients.

Event-driven communication
Event-driven communication is a messaging paradigm that’s used in distributed systems, including
microservices architectures, to enable asynchronous and loosely coupled communication between
components. In this approach, components (services or applications) communicate by exchanging
events, which are messages representing significant occurrences or state changes within the system.
Event-driven communication promotes decoupling, scalability, and responsiveness in distributed systems.

Event-driven communication 413

Here are the key concepts and characteristics of event-driven communication:

•	 Events: Events are messages that carry information about specific occurrences or state changes
within the system. Examples of events include “User Registered,” “Order Placed,” and “Payment
Processed.” Events are typically structured in a standardized format and contain relevant
data about the event, such as event type, timestamp, and payload. In event sourcing, there is
always confusion about what an event is. In event sourcing, the events cannot move outside
the services; doing so is a recipe for disaster. Events that are used in event sourcing have the
purpose of mutating the state of an aggregate. Events that you send outside the microservices
have the purpose of telling if something interesting happens and are fatter.

•	 Publish-subscribe pattern: The most common pattern for event-driven communication
is the publish-subscribe pattern. In this pattern, there are two main actors: publishers and
subscribers. Publishers generate events and publish them to a central event broker or message
queue. Subscribers express interest in specific types of events and receive copies of the events
they are interested in from the event broker.

•	 Event broker: The event broker acts as an intermediary between publishers and subscribers. It
receives events from publishers and distributes them to all relevant subscribers. The event broker
allows decoupling between the event producer and the event consumer. Commonly used event
brokers include Apache Kafka, RabbitMQ, and Amazon Simple Notification Service (SNS).

•	 Decoupling: Event-driven communication fosters loose coupling between components.
Publishers and subscribers are independent of each other, and they do not need to be aware of
each other’s existence. This allows services to evolve and scale independently without affecting
others in the system – so long as you use event versioning to avoid having coupling.

•	 Scalability: Event-driven communication facilitates horizontal scalability because new
instances of a service can subscribe to events and handle incoming messages without requiring
coordination with other services. This makes it easier to distribute the processing load across
multiple instances.

•	 Asynchronous processing: Event-driven communication is inherently asynchronous. When a
component generates an event, it does not have to wait for a response from other components.
Events are processed independently and at the convenience of each subscriber, enabling faster
response times and better fault tolerance.

•	 Event sourcing and CQRS: Event-driven communication is often used in conjunction with
event sourcing and CQRS patterns. Event sourcing involves persisting all state changes as a
sequence of events, while CQRS separates read and write operations. Events are the source of
truth for the state of the system, and different services can maintain their view of the data by
subscribing to relevant events.

•	 Distributed systems challenges: While event-driven communication offers numerous
benefits, it also introduces challenges in distributed systems. These include event ordering,
event duplication, handling event failures, and ensuring eventual consistency across services.

Microservices414

Event-driven communication is a powerful approach for building scalable and loosely coupled distributed
systems, particularly in the context of microservices architectures. It enables efficient, asynchronous,
and event-based interactions between components, promoting flexibility and responsiveness in
modern software applications.

Service resilience and fault tolerance
Service resilience and fault tolerance are two critical aspects of building robust and reliable software
systems, particularly in the context of microservices architecture and distributed systems. Both concepts
aim to ensure that the system can continue to function properly and provide essential services, even
in the face of failures or adverse conditions. Let’s explore each concept:

•	 Service resilience: Service resilience refers to the ability of a system or a service to remain
responsive and operational in the presence of failures, errors, or unexpected conditions.
Resilience is about gracefully handling failures and degradations, rather than trying to prevent
failures entirely (which can be impractical or costly).

The following are some key aspects of service resilience:

	� Failure isolation: Resilient services are designed to isolate failures, ensuring that a failure
in one service does not propagate and affect other parts of the system. This involves using
techniques such as fault domains and circuit breakers to contain the impact of failures. When
implemented correctly, you can reduce the domino effect of services failing in response to
a service going down.

	� Graceful degradation: Resilient services may degrade their functionality in response to
failures but continue to provide essential services to clients. For example, if a non-critical
component is unavailable, the service may still operate, albeit with reduced capabilities.

	� Backpressure and throttling: Resilient services implement mechanisms to manage incoming
requests and prevent overload during times of high traffic or stress. Techniques such as
backpressure and request throttling can help protect the system from being overwhelmed.

	� Retries and timeouts: Resilient services employ appropriate retry and timeout strategies
to handle transient failures. For example, when a service call fails, the client may retry the
request a few times before giving up or setting a timeout to avoid waiting indefinitely.

	� Monitoring and alerting: Service resilience often involves proactively monitoring the
system’s health and performance. Alerts are set up to notify operations teams when issues
arise, allowing them to respond promptly to potential problems.

	� Automatic healing: In some cases, resilient services can automatically recover from certain
types of failures or self-heal. For instance, a failed container in a container orchestration
system such as Kubernetes may be automatically replaced.

Service monitoring and observability 415

•	 Fault tolerance: Fault tolerance is the ability of a system to continue operating properly even
when one or more components fail. It involves designing the system in a way that mitigates
the impact of failures and provides redundancy and backups to ensure continuity of service.

Here are some key aspects of fault tolerance:

	� Redundancy: Fault-tolerant systems often have redundant components to take over when
primary components fail. This redundancy ensures that critical services are still available
even if some components become unavailable.

	� Failover and replication: Fault-tolerant systems implement failover mechanisms that allow
secondary components to take over the responsibilities of failed components. Data replication
may also be used to ensure that data remains available in case of failures.

	� State management: Fault-tolerant systems manage state and data in a way that can be easily
recovered in case of failures. This could involve using distributed databases with replication
or snapshotting mechanisms.

	� High availability: Fault-tolerant systems aim to achieve high availability by minimizing
downtime and ensuring that services are accessible even during component failures.

	� Distributed consistency: In distributed systems, maintaining consistency across nodes is
crucial for fault tolerance. Techniques such as distributed consensus protocols help achieve
consensus on critical decisions and data.

By implementing service resilience and fault tolerance techniques, software systems can continue to
operate effectively, even in the face of failures, thereby providing better reliability and improving the
overall user experience. These principles are especially relevant in microservices architectures, where
individual services must be able to handle failures independently and gracefully interact with other
services in the system.

Service monitoring and observability
Service monitoring and observability are crucial practices in maintaining and understanding the
health and performance of software systems, especially in the context of microservices architecture
and distributed systems. They involve collecting, analyzing, and acting upon data to ensure the system’s
reliability, identify issues, and make informed decisions for improvement.

Microservices416

Service monitoring

Service monitoring involves the systematic collection and analysis of various metrics and logs from
the software components and infrastructure to assess the system’s health and performance. Monitoring
provides real-time visibility into the system’s behavior, enabling quick detection of anomalies and
issues. Some key aspects of service monitoring are as follows:

•	 Metrics collection: Monitoring tools gather quantitative data, such as CPU usage, memory
consumption, request rates, error rates, and response times, from various components and
services. These metrics offer insights into resource utilization and system performance.

•	 Logging: Logging involves capturing and storing relevant events and information generated
by the application or infrastructure. Logs provide a historical record of activities, errors, and
other important events, facilitating post-mortem analysis and troubleshooting.

•	 Alerting: Monitoring systems are often configured to trigger alerts based on predefined thresholds
or anomaly detection algorithms. When certain metrics exceed or fall below acceptable levels,
alerts notify operations teams of potential issues requiring immediate attention.

•	 Dashboarding: Monitoring tools typically offer real-time dashboards that display key metrics
in a visual and easily understandable format. Dashboards allow teams to quickly assess the
overall health and performance of the system at a glance.

•	 Long-term storage: Some monitoring systems retain historical data for longer periods, enabling
trend analysis, capacity planning, and retrospective investigations.

•	 Integration with incident management: Monitoring tools are often integrated with incident
management systems. When alerts are triggered, incidents can be automatically created, tracked,
and resolved in an organized manner.

Observability

Observability goes beyond traditional monitoring and focuses on providing insights into the system’s
internal behavior, making it easier to understand and debug complex distributed systems. Observability
emphasizes understanding the system’s overall behavior through the analysis of distributed traces,
logs, and application-level events. Some key aspects of observability are as follows:

•	 Distributed tracing: Observability tools enable distributed tracing, which tracks requests as
they flow through the microservices architecture. It provides a complete view of how requests
propagate across services, helping identify performance bottlenecks and dependencies.

•	 Contextual logging: Observability often involves enriching logs with contextual information,
such as request IDs and correlation IDs, to trace a request’s path through the system effectively.

•	 Metrics aggregation and correlation: Observability tools can aggregate metrics across services
to identify patterns and correlations. This helps in understanding how the system behaves as
a whole and how changes in one service affect others.

Security 417

•	 Application-level events: Observability tools capture application-level events and activities,
providing deeper insights into the system’s behavior beyond standard metrics.

•	 Interactive exploration: Observability platforms offer interactive exploration capabilities, allowing
developers and operators to dive deeper into specific events, logs, or traces for detailed analysis.

By combining service monitoring and observability practices, development and operations teams can
gain a comprehensive understanding of the system’s behavior, troubleshoot issues more effectively, and
make informed decisions to optimize the performance, scalability, and reliability of the software system.

Security
Microservices security is a critical aspect of designing and implementing microservices architectures. As
microservices communicate over networks and interact with each other, securing the communication
and data becomes paramount to protect against potential security threats and vulnerabilities. Here
are some key considerations and best practices for microservices security:

•	 Authentication and authorization: Implement robust authentication mechanisms to ensure
that only authorized users or services can access specific microservices. Use protocols such as
OAuth, JWT, or API keys to authenticate users and services and grant them appropriate access
rights based on their roles and permissions.

•	 Secure communication: Use secure communication protocols, such as HTTPS (TLS/SSL),
to encrypt data transmitted between microservices. This ensures that sensitive information
remains confidential and protected from eavesdropping and man-in-the-middle attacks.

•	 Service-to-service communication: Secure service-to-service communication using techniques
such as mutual TLS (mTLS) authentication. This means that each service is both a client and
a server, and they mutually authenticate each other during communication.

•	 API gateway security: If an API gateway is used to handle client requests and route them
to microservices, secure the API gateway with proper authentication and access control
mechanisms. The API gateway can also be a central point for implementing security policies,
rate limiting, and throttling.

•	 Input validation and sanitization: Implement input validation and data sanitization at every
entry point to microservices (for example, APIs and user interfaces) to prevent injection attacks
and protect against malicious input.

•	 Error handling: Be cautious with error handling to avoid exposing sensitive information
to attackers. Provide informative error messages to developers but limit the details that are
exposed to end users.

•	 Secrets management: Store and manage secrets, such as API keys, passwords, and cryptographic
keys, securely using tools such as Vault or Key Management Service (KMS). Avoid hardcoding
secrets in configuration files or source code.

Microservices418

•	 Container security: If microservices are containerized, ensure container images are built from
trusted sources, and regularly update them to address security vulnerabilities. Apply container
security best practices, such as restricting access to the host operating system and employing
minimalistic base images.

•	 Continuous security testing: Implement continuous security testing practices, including
static code analysis, dynamic security scanning, and vulnerability assessments, to identify and
remediate security issues throughout the development and deployment process.

•	 Logging and monitoring: Implement comprehensive logging and monitoring to track activities
and detect potential security breaches. Use centralized logging and monitoring tools to analyze
logs and metrics from various microservices effectively.

•	 Least privilege principle: Follow the principle of least privilege, where each service should
have the minimum permissions required to perform its tasks, reducing the potential impact
of a security breach.

•	 Regular security audits: Conduct regular security audits and penetration testing to assess
the security posture of the microservices architecture and identify potential vulnerabilities.

Remember that securing microservices is an ongoing process that requires a combination of secure
coding practices, proper configuration, continuous monitoring, and a security-focused culture within
the development and operations teams. By integrating security measures into the microservices
architecture from the outset, you can significantly reduce the risk of security breaches and protect
sensitive data and resources.

CI/CD
CI/CD is an essential practice in software development, and it becomes even more critical in the
context of microservices architectures. CI/CD enables teams to automate and streamline the process
of building, testing, and deploying microservices, ensuring faster and more reliable releases. Let’s
explore the use of CI/CD with microservices:

•	 CI: CI involves frequently integrating code changes from multiple developers into a shared
repository. The goal is to detect integration issues early and ensure that the code base is
continuously up-to-date and in a working state. With microservices, CI involves integrating
changes from different teams working on individual services and ensuring that they work
harmoniously together. The benefit of microservices is that the code base of a microservice is
small, which allows the team to use trunk-based development or Gitflow with really short-lived
branches. By leveraging Pull Requests and a series of automated testing in Pull requests, you
can enforce versioning and other requirements.

CI/CD 419

Here are some key CI practices in a microservices context:

	� Automated builds: Each microservice should have a build pipeline to automate the build
process. This ensures that changes made to the microservice’s code are automatically built
and tested.

	� Unit and integration testing: Automated testing is crucial to validate the functionality and
integration of each microservice. Unit tests ensure that individual components work as
expected, while integration tests validate the interaction between microservices.

	� Code reviews: CI encourages frequent code reviews to maintain code quality and to ensure
that changes meet the project’s standards. Using Git, you can use Pull Requests to ensure
that every modification is reviewed by the team. You can also run unit and integration
tests automatically in Pull request code so that errors are caught before they reach the
production branch.

	� Version control: Microservices should be versioned in the code repository to enable proper
management and tracking of changes.

•	 CD: CD involves automatically deploying changes to production once they’ve passed the automated
tests. In a microservices architecture, CD becomes complex as each microservice may have its own
deployment process. Coordinating the deployment of multiple microservices can be challenging.

Here are some key CD practices in a microservices context:

	� Deployment automation: Automate the deployment of microservices to ensure consistency
and reduce the risk of manual errors. Containerization (for example, Docker) and container
orchestration (for example, Kubernetes) can facilitate this process.

	� Rollout strategies: Implement different rollout strategies, such as blue-green deployments,
canary releases, or feature toggles, to manage the gradual release of new versions and ensure
smooth deployments with minimal disruption.

	� Service discovery: Use service discovery mechanisms to enable newly deployed microservices
to be discovered and accessed by other services seamlessly.

	� Monitoring and rollback: Implement monitoring and alerting to track the health of
microservices after deployment. In case of issues or performance degradation, CD pipelines
should allow you to automatically roll back to the previous stable version.

•	 Microservices-specific challenges: While CI/CD is beneficial for microservices, it comes with
some specific challenges:

	� Integration testing complexity: Testing the integration of multiple microservices can be
complex, especially when you’re dealing with dependencies and communication between
services. Each microservice team must give the other a simple mock version of their
service. This mock is used during integration tests. Usually, the mock can randomly or
programmatically fail.

Microservices420

	� Dependency management: Microservices might have different release cycles and dependencies,
making it essential to manage version compatibility and ensure smooth updates.

	� Data migrations: Coordinating database schema changes and data migrations across
microservices can be challenging.

	� Deployment orchestration: Coordinating the deployment of multiple microservices with
interdependencies requires careful planning and orchestration.

Despite these challenges, CI/CD is crucial for the success of microservices. It accelerates the development
process, reduces manual errors, and allows teams to deliver new features and bug fixes more frequently, all
while maintaining a reliable and stable system. As a result, CI/CD is a fundamental part of modern software
development practices and plays a significant role in supporting microservices’ agility and scalability.

Microservice testing
Microservice testing is a crucial aspect of developing robust and reliable microservices-based applications.
As microservices are individual, independent services that interact with each other through APIs, they
need to be thoroughly tested to ensure they function correctly both in isolation and when integrated
with other services. Effective microservice testing involves a combination of unit testing, integration
testing, and end-to-end testing to verify the functionality, performance, and stability of each service.

Here are the key types of microservice testing:

•	 Unit testing: Unit testing focuses on testing individual units or components of a microservice
in isolation. It involves testing functions, methods, or classes to ensure they work as intended
and produce the expected results. Unit tests are written to cover various scenarios and edge
cases, providing quick feedback on the correctness of code implementations.

In microservices, unit tests typically focus on testing the core business logic of each service
independently. Since microservices are small and focused, unit testing can be highly effective
in detecting bugs early in the development process.

•	 Integration testing: Integration testing verifies the interaction and communication between
multiple microservices and their dependencies. The goal is to ensure that services work correctly
when integrated with other services and external components, such as databases, message
brokers, and third-party APIs.

In microservices, integration testing may involve running tests against actual services, stubbing
or mocking external dependencies, or using containerization and test environments to replicate
the production environment more accurately.

•	 Component testing: Component testing aims to test a group of related microservices together
as a cohesive unit. Instead of testing each microservice in isolation, component testing focuses
on validating the interactions and collaborations between services that belong to the same
functional area or domain.

Scaling microservices 421

Component tests provide a middle ground between unit tests and end-to-end tests, allowing
developers to identify issues related to service integration without the complexity of end-to-end testing.

•	 End-to-end testing: End-to-end testing verifies the complete flow of a business process or user
journey across multiple microservices. It aims to validate that the entire application works as
expected, from the user interface to the backend services.

End-to-end tests often simulate real user interactions and scenarios, helping to ensure that the
microservices work harmoniously together. However, end-to-end testing can be more complex
and time-consuming compared to other types of testing, so it’s essential to strike a balance and
focus on critical user journeys.

•	 Performance testing: Performance testing evaluates the responsiveness and stability of
microservices under various load conditions. It helps identify performance bottlenecks, resource
limitations, and potential scalability issues.

Performance testing in microservices may involve stress testing, load testing, and capacity
planning to ensure the services can handle the expected traffic and user demand.

•	 Security testing: Security testing focuses on identifying vulnerabilities and weaknesses in
microservices that may lead to security breaches. It involves testing for common security issues,
such as SQL injection, cross-site scripting (XSS), and unauthorized access.

Security testing is crucial for microservices as a security vulnerability in one service can
potentially compromise the entire system.

To effectively test microservices, automation is key. Automated testing enables rapid feedback, allows
for continuous integration and deployment, and ensures that tests can be run consistently across
different environments. Additionally, testing microservices in isolation, using mocking or stubbing
for external dependencies, and adopting a test-driven development (TDD) approach, can contribute
to building more resilient and maintainable microservices.

Scaling microservices
Microservice scaling refers to the process of adjusting the capacity and performance of individual
microservices to meet the changing demands of a system. Scaling is essential in microservices
architectures, where different services may have varying resource requirements and experience
different levels of traffic at different times. By scaling microservices appropriately, you can ensure
optimal resource utilization, high availability, and responsiveness. There are two main types of scaling
– horizontal scaling and vertical scaling:

•	 Horizontal scaling: Horizontal scaling, also known as scaling out, involves adding more
instances of a microservice to distribute the workload across multiple servers or containers.
Each instance operates independently and can handle requests in parallel. Horizontal scaling
is the preferred approach in microservices architectures as it allows for more flexible and
granular resource allocation.

Microservices422

Here are some key aspects of horizontal scaling:

	� Load balancing: To effectively distribute incoming requests across multiple instances of a
microservice, a load balancer is used. This load balancer ensures that each instance receives
a fair share of requests and prevents any single instance from becoming overloaded.

	� Statelessness: For seamless horizontal scaling, microservices should be stateless, meaning
that they do not rely on storing session or state information on the server. Instead, state is
managed externally (for example, in databases or caches) to allow any instance to handle
any request.

	� Container orchestration: In containerized environments, horizontal scaling can be managed
by container orchestration platforms such as Kubernetes or Docker Swarm. These platforms can
automatically spin up new instances of a microservice based on predefined rules and policies.

•	 Vertical scaling: Vertical scaling, also known as scaling up, involves increasing the resources
(such as CPU, memory, or storage) of a single instance of a microservice. In this approach, you
upgrade the server or virtual machine where the microservice is running to handle increased
demand or resource-intensive tasks.

Here are some key aspects of vertical scaling:

	� Resource allocation: To vertically scale a microservice, you need to ensure that the server or
virtual machine has sufficient resources to handle the expected workload. This may involve
upgrading the server’s CPU, adding more memory, or increasing storage capacity.

	� Limitations: Vertical scaling has limitations as there is a maximum capacity that a single
server or virtual machine can handle. Additionally, vertical scaling may cause temporary
downtime during the upgrade process. Thanks to the cloud, vertical scaling is probably a cost
problem. Horizontal scaling is something you need to take into account during development
and is the preferred way to scale up cost-effectively. Scaling up has no linear cost, while
horizontal scaling does.

In practice, a combination of horizontal and vertical scaling may be used to achieve the desired level of
performance and resource optimization for a microservices architecture. Horizontal scaling is typically
the preferred approach for handling dynamic workloads and ensuring high availability, while vertical
scaling can be useful for addressing short-term spikes in resource demands.

Implementing effective microservice scaling requires closely monitoring performance metrics,
resource utilization, and traffic patterns. Automated scaling solutions, such as auto-scaling in cloud
environments, can dynamically adjust the number of instances based on predefined rules and
performance thresholds, allowing the system to adapt to changing demands automatically. By scaling
microservices appropriately, you can build flexible, resilient, and highly responsive applications that
can handle varying workloads and ensure a positive user experience.

Versioning and compatibility 423

Versioning and compatibility
Microservice versioning and compatibility are essential considerations when working with microservices
architectures. As microservices are developed and deployed independently, changes to their interfaces
or behaviors can lead to compatibility issues between services. Proper versioning and compatibility
management are crucial to ensure smooth communication and collaboration between microservices:

•	 Microservice versioning: Microservice versioning refers to the practice of assigning unique
identifiers to different versions of a microservice’s API, data structures, or contract. When
a change is made to a microservice, the version is incremented, allowing clients and other
microservices to know which version of the service they are interacting with.

There are different approaches to versioning microservices:

	� URL versioning: In this approach, the version is included in the URL of the API endpoint.
For example, “/v1/customers” and “/v2/customers” represent different versions of the
“customers” API.

	� Header versioning: The version information is included in a request header. This keeps
the URL clean but requires clients to explicitly specify the desired version in each request.

	� Media type versioning: The version is embedded in the media type or content type of the
request or response payload.

	� Semantic Versioning (SemVer): SemVer is a versioning convention that follows the “MAJOR.
MINOR.PATCH” format, where each part represents significant changes, backward-compatible
changes, and bug fixes, respectively.

Proper versioning helps maintain backward compatibility while introducing changes to
microservices, ensuring that existing clients can continue to communicate with older versions
while new clients use the latest version.

•	 Microservice compatibility: Microservice compatibility refers to the ability of a microservice
to interact and collaborate effectively with other services, regardless of the versions they are
running. Maintaining compatibility is crucial to avoid breaking existing integrations and
causing disruptions in the system.

Some key aspects of microservice compatibility are as follows:

	� Backward compatibility: New versions of microservices should strive to be backward
compatible, meaning they can handle requests and responses from older versions without
issues. Existing clients should continue to work as expected when interacting with newer
versions of the microservice.

	� Forward compatibility: Services should also be forward compatible, meaning they can handle
requests from newer versions of clients. This allows clients to be updated independently
without breaking the interaction with the microservice.

Microservices424

	� Graceful deprecation: When deprecating older versions of a microservice, provide sufficient
notice to clients and allow for a transition period. During this period, both the old and new
versions should be supported.

	� API documentation: Maintain up-to-date and detailed API documentation, including version
information, to help clients understand changes and adapt their integrations accordingly.

	� Testing and version management: Comprehensive testing and version management
processes are essential to ensure that new versions of microservices work seamlessly with
existing components.

	� Service discovery and registration: Proper service discovery and registration mechanisms
are crucial to allow clients to locate and interact with the appropriate versions of
microservices dynamically.

By adopting effective versioning practices and ensuring compatibility, microservices can evolve and
improve independently while maintaining smooth communication and collaboration across the system.
This promotes a more agile and resilient microservices architecture, enabling faster development cycles
and easier deployment of new features and updates.

Microservices best practices and anti-patterns
Microservices have become a popular architectural style for building modern, scalable, and maintainable
applications. While microservices offer numerous benefits, it is essential to follow best practices and
avoid common anti-patterns to maximize their advantages and mitigate potential challenges. Let’s
explore some key microservices best practices and anti-patterns.

Microservices best practices

These are as follows:

•	 Single responsibility principle (SRP): Each microservice should have a single responsibility or
business domain. This ensures that microservices are focused, maintainable, and loosely coupled.

•	 Decentralized data management: Each microservice should have its own database or data
store, enabling independent scaling and isolation of data.

•	 Service independence: Microservices should be developed, deployed, and scaled independently.
Avoid tight coupling between services to allow for flexible development and deployment.

•	 Service contracts and APIs: Define clear contracts and well-defined APIs for communication
between microservices. This promotes consistency and avoids compatibility issues.

•	 Containerization: Use containerization (for example, Docker) to package microservices with their
dependencies, ensuring consistency across development, testing, and production environments.

Microservices best practices and anti-patterns 425

•	 Container orchestration: Use container orchestration platforms (for example, Kubernetes) to
automate the deployment, scaling, and management of microservices.

•	 Automated testing: Implement comprehensive automated testing (unit, integration, and
end-to-end) to ensure the correctness and reliability of microservices.

•	 CI/CD: Adopt CI/CD pipelines to automate the build, testing, and deployment of microservices
for rapid and reliable releases.

•	 Monitoring and observability: Implement monitoring and observability practices to gain
insights into the health and performance of microservices, facilitating troubleshooting and
performance optimization.

•	 Graceful degradation: Design microservices to gracefully degrade functionality when facing
partial failures or high loads, ensuring availability and responsiveness.

Microservices anti-patterns

The following are some crucial considerations when designing and implementing
microservices architectures:

•	 Monolithic communication:

	� Risk: Synchronous and chatty communication patterns between microservices can lead to
increased latency and performance bottlenecks.

	� Long-term impact: Such communication patterns can result in a tightly coupled system,
limiting the benefits of microservices. Adopting asynchronous communication, such as
message queues or event-driven patterns, can enhance scalability and maintainability.

•	 Data sharing among microservices:

	� Risk: Direct data sharing may cause tight coupling and jeopardize data consistency
across microservices

	� Long-term impact: Asynchronous communication or event-driven patterns, such as publish-
subscribe, allow microservices to exchange information without direct coupling, fostering
autonomy and flexibility in development and deployment

•	 Inadequate security:

	� Risk: Insufficient security measures can expose vulnerabilities, risking data breaches and
unauthorized access.

	� Long-term impact: Robust authentication, authorization, and encryption mechanisms are
imperative for securing microservices. Regular security audits and updates are essential to
protect against evolving threats.

Microservices426

•	 Ignoring boundaries:

	� Risk: Ill-defined boundaries between microservices can lead to overlapping functionality
and reduced autonomy

	� Long-term impact: Clearly defining and enforcing boundaries ensures each microservice’s
independence and facilitates easier maintenance, updates, and scaling

•	 Ignoring failure scenarios:

	� Risk: Failing to plan for failure scenarios can result in cascading failures and system downtime

	� Long-term impact: Implementing fallback mechanisms, retry strategies, and effective error
handling is critical for system resilience and minimizing the impact of failures

•	 Microservices for all use cases:

	� Risk: Applying microservices to every use case may introduce unnecessary complexity.

	� Long-term impact: Evaluate whether a monolithic or microservices architecture is more
suitable for specific use cases. Striking a balance ensures optimal system architecture and
development efficiency.

•	 Microservices at early stages:

	� Risk: Premature adoption of microservices can lead to complexity and hinder
development progress.

	� Long-term impact: Start with a monolithic architecture and transition to microservices as
the application’s complexity and team capabilities evolve. Gradual adoption allows for more
informed decisions.

•	 Overlooking testing and deployment automation:

	� Risk: Neglecting automated testing and deployment pipelines can result in errors and slow
release cycles

	� Long-term impact: Investing in comprehensive testing suites, continuous integration, and
deployment automation ensures consistent, error-free releases and accelerates development cycles

Incorporating these considerations into the microservices design process contributes to the long-term
success, scalability, and maintainability of the overall system. Regular reassessment and adaptation
are essential as the system evolves and requirements change.

Case studies and real-world examples 427

Case studies and real-world examples
Here are some real-world examples and case studies of companies that have successfully adopted
microservices architectures:

•	 Netflix: Netflix is one of the most well-known examples of a company that embraced microservices.
They transitioned from a monolithic architecture to a microservices-based architecture to
improve agility and scalability. By breaking down their application into hundreds of small,
loosely coupled microservices, Netflix can innovate faster and release new features frequently.
Each microservice is responsible for a specific aspect of the application, such as recommendation
algorithms, user authentication, and video streaming.

•	 Uber: Uber also adopted a microservices architecture to handle its massive scale and dynamic
demands. Microservices at Uber manage various functionalities, including user registration, trip
management, payment processing, and geolocation services. This architecture allows Uber to
independently scale services based on the specific demands of each component. It also supports
the rapid development of new features and services to enhance the overall customer experience.

•	 Amazon: Amazon is another prominent company that employs microservices extensively.
Amazon’s retail platform is composed of a vast number of microservices, each responsible for
specific tasks such as inventory management, order processing, product recommendations,
and payment processing. This architecture enables Amazon to handle high traffic loads during
peak shopping seasons and efficiently manage its large product catalog. The following article is
worth reading: Return of the Monolith: Amazon Dumps Microservices for Video Monitoring - The
New Stack (https://thenewstack.io/return-of-the-monolith-amazon-
dumps-microservices-for-video-monitoring/). Sometimes, monoliths produce
superior performance to services.

•	 Etsy: Etsy, an online marketplace for handmade and vintage products, shifted to a microservices
architecture to improve scalability and developer productivity. By adopting microservices, Etsy’s
development teams gained autonomy over their services, enabling them to innovate faster and
respond to user needs more effectively. The company also reported improved service reliability
and faster deployments.

•	 SoundCloud: SoundCloud, a popular music streaming platform, re-architected its application
using microservices to handle the growing number of users and media files. The microservices
architecture allowed SoundCloud to scale different parts of their system independently, ensuring
that services for uploading, processing, and streaming music could be individually optimized
and scaled to meet the demands of the platform’s users.

•	 Zalando: Zalando, a leading European fashion platform, adopted microservices to build a more
flexible and scalable architecture. Their microservices architecture allows them to continuously
deploy new features and services, supporting rapid growth and frequent changes to their platform.

https://thenewstack.io/return-of-the-monolith-amazon-dumps-microservices-for-video-monitoring/
https://thenewstack.io/return-of-the-monolith-amazon-dumps-microservices-for-video-monitoring/

Microservices428

These case studies demonstrate how microservices can help organizations achieve improved scalability,
flexibility, and developer productivity. However, it’s essential to keep in mind that adopting microservices
is not without its challenges. The transition from monolithic architecture to microservices requires
careful planning, investment in infrastructure, and a cultural shift within development teams. When
implemented correctly, microservices can offer significant benefits for organizations aiming to build
and maintain complex, scalable, and highly available applications.

Summary
Microservices is an architectural style for building software applications that focuses on breaking down
the application into a collection of small, independent services, each running in its own process and
communicating over lightweight protocols.

Microservices architecture emphasizes the principle of “divide and conquer” by breaking down complex
applications into smaller, manageable, and loosely coupled services. Each microservice represents a
specific business capability or domain, and they can be developed, deployed, and scaled independently.

Microservices offer numerous advantages, including improved scalability, flexibility, maintainability,
and faster development cycles. They allow for granular scaling, independent service updates, and better
isolation of failures. They also have several defining characteristics, including single responsibility,
independence, decentralized data management, and communication through APIs.

Service discovery and registration mechanisms are essential for enabling microservices to locate and
communicate with each other in a dynamic and distributed environment. Note that microservices need
to be designed to handle failures gracefully and in a way that isolates failures to prevent cascading effects.

Containerization, such as using Docker, simplifies deployment and ensures consistency across various
environments. Container orchestration platforms, such as Kubernetes, automate the management and
scaling of containerized microservices.

API gateways act as central entry points for external clients and manage requests, load balancing, and
communication with microservices.

Event-driven communication enables asynchronous and loosely coupled interactions between
microservices through the exchange of events, promoting scalability and responsiveness.

Effective monitoring and observability practices are essential for gaining insights into the health
and performance of microservices as they facilitate troubleshooting and performance optimization.

Proper versioning and compatibility management are crucial to ensure smooth communication and
collaboration between microservices during updates.

Key best practices include adhering to the SRP, automated testing, continuous integration and
deployment, and proper service contract definitions.

Questions 429

Common anti-patterns to avoid include monolithic communication, inadequate security, data sharing
among microservices, and overusing microservices for all use cases.

Microservices offer a modern approach to building complex, scalable, and maintainable applications.
However, adopting microservices requires careful planning, a cultural shift in development practices,
and a focus on best practices to realize their full potential and achieve the desired benefits.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 What is microservices architecture?

2.	 What are the benefits of adopting microservices architecture?

3.	 How do microservices communicate with each other?

4.	 What is the role of service discovery in microservices?

5.	 How does containerization contribute to microservices architecture?

6.	 What are some key considerations for ensuring service resilience in microservices?

7.	 Why is automated testing important in microservices development?

Further reading
Here is a list of further reading resources on developing microservices in C#:

•	 Building Microservices with ASP.NET Core, by Kevin Hoffman, Chris Umbel, and Chris
Richardson: This book explores microservices architecture using ASP.NET Core, providing
practical examples and best practices for building microservices with C#.

•	 Microservices in .NET Core: with examples in Nancy, by Christian Horsdal Gammelgaard: This
book delves into the fundamentals of microservices and demonstrates how to implement them
using .NET Core, with a focus on the Nancy framework.

•	 Microservices Architecture: Make the Architecture of a Software as Simple as Possible, by Shahid
Hussain: This book offers insights into microservices architecture, design principles, and C#
implementation strategies, making it a valuable resource for C# developers.

•	 Building Microservices with .NET Core 2.0 – Second Edition, by Gaurav Kumar Aroraa: This
book provides a comprehensive guide to building microservices with .NET Core, covering
various aspects such as testing, containerization, and deployment.

•	 Microservices in Action, by Morgan Bruce and Paulo A. Pereira: Although not C#-specific, this
book offers a practical guide to implementing microservices in various languages, including
C#. It covers essential concepts and best practices for microservices development.

Microservices430

•	 Designing Distributed Systems: Patterns and Paradigms for Scalable, Reliable Services, by Brendan
Burns and David Oppenheimer: While not C#-specific, this book provides valuable insights
into the principles and patterns of designing distributed systems, which are fundamental to
microservices architecture.

•	 Learn Microservices with C#, by Matt Parsons: This online course on Pluralsight provides a
hands-on approach to building microservices using C# and .NET Core, covering topics such
as API gateways, service discovery, and monitoring.

•	 Microservices Fundamentals (Microsoft Docs) (https://docs.microsoft.com/en-us/
dotnet/architecture/microservices/): Microsoft’s official documentation
on microservices, specifically focused on C# and .NET Core, covers essential concepts and
implementation guidelines.

These resources should provide a solid foundation and practical guidance for you to explore and
implement microservices architecture in your projects.

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/

Assessments

Chapter 1
1.	 Bad code refers to code that is difficult to understand, hard to maintain, prone to bugs, or

inefficient. It violates coding principles, standards, or best practices and may cause problems
in the software.

2.	 Good code is code that is easy to understand, maintainable, bug-free, and efficient. It adheres
to coding principles, standards, or best practices and contributes to the software’s stability
and reliability.

3.	 Some common signs of bad code include long and complex functions or classes, unclear variable
or function names, poor error handling, lack of comments or documentation, and inconsistent
formatting or indentation.

4.	 Some common coding standards include naming conventions for variables, functions, and
classes, consistent indentation and formatting, using comments to explain code or document
its purpose, following design patterns, and avoiding hard-coded values.

5.	 Some coding principles include DRY, SOLID, YAGNI, and KISS.

6.	 Agile software development is an iterative and incremental approach to software development
that values flexibility, collaboration, and continuous improvement. It involves breaking down
the development process into smaller chunks called sprints, where the team delivers working
software at the end of each sprint.

7.	 TDD is a software development process that involves writing automated tests before writing
the code to pass those tests. The goal is to ensure that the code is functional and bug-free from
the start and to promote a more thorough understanding of the requirements and design.

8.	 Refactoring is the process of improving the quality and maintainability of existing code without
changing its behavior. It involves making small, incremental changes to the code to remove
duplication, improve readability, or simplify complexity. Refactoring is an essential part of
maintaining a healthy code base over time.

Chapter 2
1.	 The two roles in the peer code review are reviewer and reviewee.

2.	 The project manager agrees on the people that will be involved in the peer code review.

Assessments432

3.	 You can save your reviewer time and effort prior to requesting a peer code review by making
sure your code and tests all work, that you perform code analysis on your project and fix any
issues raised, and that your code adheres to the company coding guidelines.

4.	 When reviewing code, look out for naming, formatting, programming styles, potential bugs,
correctness of code and tests, security, and performance issues.

5.	 The three categories of feedback are positive, optional, and critical.

Chapter 3
1.	 We can organize classes in C# using namespaces, which provide a way to group related classes

and avoid naming conflicts.

2.	 A class should have a single responsibility, following the SRP from the SOLID principles.

3.	 To comment code for document generators, use XML comments starting with /// to provide
documentation for classes, methods, and parameters.

4.	 Cohesion refers to how closely related the responsibilities of elements within a module (for
example, a class) are. High cohesion means elements are closely related and focused on a
single task.

5.	 Coupling refers to the degree of dependency between modules or classes. Loose coupling means
classes are less dependent on each other.

6.	 Cohesion should be high, meaning that a class should have a single, well-defined responsibility.

7.	 Coupling should be loose, indicating that classes should be as independent as possible.

8.	 Mechanisms for designing for change include SOLID principles, DI, and design patterns such
as the strategy pattern.

9.	 DI stands for dependency injection, a design pattern in which a class’s dependencies are provided
externally rather than created within the class.

10.	 IoC stands for inversion of control, a design principle that promotes decoupling and allows the
control of the flow of a program to be shifted to external components.

11.	 One benefit of using immutable objects is that they are inherently thread-safe, simplifying
multi-threading and concurrency issues.

12.	 Objects should hide their internal state and implementation details while showing a well-
defined, public interface.

13.	 Structures should also hide their internal state and expose a clear, public interface.

Chapter 4
1.	 Methods with no parameters are called niladic methods.

2.	 Methods with only one parameter are called monadic methods.

Chapter 5 433

3.	 Methods with two parameters are called dyadic methods.

4.	 Methods with three parameters are called triadic methods.

5.	 Methods with more than three parameters are called polyadic methods.

6.	 You should avoid duplicate code. It is not a productive way to program, can make programs
unnecessarily large, and has the propensity to proliferate the same exception throughout your codebase.

7.	 Functional programming is a software coding methodology that treats computations as the
mathematical evaluation of computations that does not modify state.

8.	 The advantages of functional programming include safe code in multithreaded applications
and smaller, more meaningful methods that are easy to read and understand.

9.	 Input and output can be a problem for functional programs as it relies on side-effects. Functional
programming does not allow for side-effects.

10.	 WET code is the opposite of DRY in that code is written each time it is needed. This produces
duplication, and the same exception can occur in multiple locations within a program, making
maintenance and support more difficult.

11.	 DRY code is the opposite of WET in that code is only ever written once and is reused wherever
it is needed. This reduces the code base and exception footprint, thus making programs easier
to read and maintain.

12.	 You DRY out WET code by removing duplicate code using refactoring.

13.	 Long methods are cumbersome and prone to exceptions. The smaller they are, the easier
they are to read and maintain. There is also less chance of the programmer introducing bugs,
especially of a logical nature.

14.	 To avoid having to use try-catch blocks, you can write argument validators. You would then call
the validators at the top of your method. If the parameters fail validation, then the appropriate
exception is thrown, and the method is not executed.

Chapter 5
1.	 The principle of handling exceptions as close to the source of the error as possible is known as

“Exception Handling Locality.” It is important for clean code because it promotes clarity and
helps in understanding the context of errors, making the code more maintainable and readable.

2.	 Making exception handling more specific involves catching more derived exception types
before more generic ones. This approach allows for more targeted handling of specific issues
and provides better information about the nature of the problem.

3.	 A finally block in a try-catch-finally statement is a section of code that executes regardless of
whether an exception occurs or not. It is essential for writing robust and maintainable code
because it ensures that cleanup or resource release operations are performed, even in the
presence of exceptions.

Assessments434

4.	 Using custom exception types allows you to create meaningful and specific exceptions for
different error scenarios. This enhances the clarity of your code, provides more information
to developers, and makes it easier to maintain and extend the codebase.

5.	 Best practices for logging and handling exceptions in multithreaded code include using thread-
safe logging mechanisms, avoiding global state changes in catch blocks, and ensuring proper
synchronization to prevent race conditions.

6.	 The global exception handler provides a centralized location to handle unhandled exceptions
in an application. By hooking into this handler, you can log exceptions, perform cleanup
operations, and gracefully terminate the application, enhancing overall reliability.

7.	 Testing exception handling is important to ensure that your code behaves correctly in error
scenarios. Common approaches include writing unit tests for expected exceptions, testing
boundary conditions, and simulating error conditions to validate the robustness of your
exception-handling logic.

8.	 Common pitfalls to avoid in exception-handling code include catching overly broad exception
types, swallowing exceptions without proper logging, and relying too heavily on global exception
handlers. To ensure effectiveness and maintainability, focus on handling specific exceptions,
logging relevant information, and considering the impact on system stability.

9.	 Exception handling can impact code readability and maintainability by introducing additional
control flow and nesting. Striking the right balance involves handling exceptions at an
appropriate level, using clear and concise error messages, and organizing exception-handling
code to minimize complexity while maintaining a clear understanding of error-handling logic.

Chapter 6
1.	 Testing frameworks for C#:

	� NUnit: Widely used, supports parameterized tests, lacks some advanced features.

	� xUnit: Similar to NUnit but newer, promotes more modern testing practices, extensible.

	� MSTest: Integrated with Visual Studio, easy setup, but historically considered less flexible.

2.	 Best practices for unit tests in C#:

	� Isolation: Tests should be independent, not relying on the OOE.

	� Readability: Clearly express the intent of the test and use meaningful names.

	� Speed: Tests should run quickly, enabling frequent execution.

	� Maintainability: Regularly update tests to reflect changes in the code base.

Chapter 7 435

3.	 Mocking data in unit tests:

	� Use mocking frameworks such as Moq or NSubstitute to create fake objects.

	� Mock external dependencies by providing controlled responses to method calls.

	� Focus on testing specific code units in isolation without invoking actual external services.

4.	 Code coverage analysis in Visual Studio 2022:

	� Code coverage: Measures the percentage of code lines executed during tests.

	� In Visual Studio 2022, use the built-in code coverage tool.

	� Identify untested code areas and improve test coverage for more robust testing.

5.	 Ensuring unit tests are exception-free:

	� Use try-catch blocks within tests to catch exceptions.

	� Log or report exceptions for analysis without affecting the test run.

	� Ensure that assertions and verifications are appropriately handled to prevent false positives
in case of exceptions.

Chapter 7
1.	 Security in a C# API can be ensured by implementing proper authentication and authorization

mechanisms. Best practices include using HTTPS to encrypt data in transit, employing secure
token-based authentication (for example, OAuth 2.0 or JWT), validating and sanitizing input
data to prevent injection attacks, and implementing role-based access control to manage
user permissions.

2.	 OWASP is a nonprofit organization dedicated to improving the security of software. It provides
resources, tools, and best practices to help organizations develop and maintain secure web
applications. OWASP is known for its “OWASP Top 10,” a list of the most critical web application
security risks. Its significance lies in promoting awareness and providing a framework for
addressing common security challenges in web development.

3.	 OIDC is an identity layer built on top of OAuth 2.0, providing authentication services. While
OAuth 2.0 is primarily an authorization framework, OIDC adds an authentication layer,
allowing clients to verify the identity of end users based on the authentication performed by
an authorization server. OIDC defines additional endpoints and ID tokens to facilitate identity
verification. In contrast, OAuth 2.0 focuses on delegated authorization for resource access.

Assessments436

4.	 OAuth 2.0 involves three main roles: the Resource Owner, the Client, and the Authorization
Server. The Resource Owner owns the protected resources, the Client is the application seeking
access to those resources, and the Authorization Server authenticates the Resource Owner and
issues access tokens. The typical OAuth 2.0 flow involves the Client obtaining authorization
from the Resource Owner through the Authorization Server, after which the Client uses the
authorization to request an access token, allowing it to access protected resources on behalf
of the Resource Owner.

Chapter 8
1.	 Aspects of a software system that cut across multiple modules or components, affecting the

behavior and functionality of the application as a whole.

2.	 They have a huge impact on the application.

3.	 They significantly impact the overall quality, maintainability, and performance of the application.

4.	 Logging, error handling, exception management, security and authorization, caching, performance
optimization, transaction management, validation, auditing and compliance, localization and
internationalization, logging, and monitoring.

Chapter 9
1.	 An aspect is a modular unit of cross-cutting concerns that can be applied to multiple parts of

a software system. Using PostSharp, an aspect is applied as an attribute to the location where
the code is to be weaved.

2.	 In C#, an attribute is a declarative tag or an annotation that provides additional information
about various program elements such as classes, methods, properties, or parameters. Attributes
can be used to add metadata, define behavior, or modify the way program elements are treated
by the runtime environment. You place an attribute at the correct location surrounded by
square brackets: [AnAttribute].

3.	 Aspects are added to source code as attributes. This helps the AOP framework identify an
attribute that is to be weaved at compile time.

4.	 The AOP framework forms part of the build pipeline. When an aspect is identified via an
attribute, it is weaved into the source code by the AOP framework.

Chapter 10
1.	 Code metrics are several source code measurements that enable us to identify how complex

our software is, and how maintainable it is. Such measurements enable us to identify areas of
code that can be made less complex and more maintainable through refactoring.

2.	 Cyclomatic complexity, maintainability index, depth of inheritance, class coupling, lines of
source code, and lines of executable code.

Chapter 11 437

3.	 Code analysis is the static analysis of source code with the intention of identifying design flaws,
issues with globalization, security problems, issues with performance, and interoperability problems.

4.	 Quick actions are single commands identified by a screwdriver or lightbulb that will suppress
warnings, add using statements, import missing libraries and add the using statements, correct
errors, and implement language usage improvements aimed at simplifying code and reducing
the number of lines in a method.

5.	 JetBrains’ dotTrace utility is a profiling tool used for the purpose of profiling source code and
compiled assemblies to identify potential issues with the software. With it you can perform
sampling, tracing, line-by-line, and timeline profiling. You can profile execution time, thread
time, real-time CPU instructions, and thread cycle time.

6.	 JetBrains’ ReSharper utility is a code refactoring tool that helps developers identify and fix
code issues and implement language features to improve and speed up the programmer’s
programming experience.

7.	 The decompilation of source code can be used to retrieve lost source code, generate PDBs
for debugging, and for learning. You can also use the decompiler to see how well you have
obfuscated your code to make it hard for hackers and other people to steal your code secrets.

Chapter 11
1.	 The three main categories of code smells are as follows:

	� Structural code smells: These are issues related to the structure of the code, such as excessive
complexity, long methods, and large classes

	� Functional code smells: These relate to problems in how the code functions, including
duplicated code, inappropriate comments, and magic numbers

	� Architectural code smells: These involve higher-level architectural issues, such as improper
layering, tight coupling, and violation of SOLID principles

2.	 Different types of application-level code smells include the following:

	� Feature envy

	� Shotgun surgery

	� Parallel inheritance hierarchies

	� Blob

	� Swiss Army knife

Assessments438

3.	 Different types of class-level code smells include the following:

	� Large class

	� God class

	� Data class

	� Refused bequest

	� Divergent change

4.	 Different types of method-level code smells include the following:

	� Long method

	� Nested method calls

	� Too many parameters

	� Primitive obsession

	� Temporary field

5.	 Various refactoring techniques can be used to clean up code smells, including extract method,
extract class, remove duplication, rename method, replace conditional with polymorphism,
and more, depending on the specific code smell and its context.

6.	 Cyclomatic complexity is a software metric that measures the complexity of a program’s control
flow. It counts the number of linearly independent paths through a function or method. It helps
in identifying the number of test cases required for comprehensive test coverage.

7.	 Cyclomatic complexity can be overcome by simplifying control flow, breaking down complex
functions into smaller ones, and adhering to coding practices that reduce branching and
decision points.

8.	 Contrived complexity refers to unnecessary complexity introduced into code due to overengineering
or using overly complex solutions for simple problems.

9.	 To overcome contrived complexity, simplify the code by removing unnecessary abstractions,
design patterns, or features that do not provide significant benefits.

10.	 Combinatorial explosion occurs when the number of possible combinations or states grows
exponentially, making it impractical to handle all cases individually.

11.	 Combinatorial explosion can be overcome by using abstraction, simplification, or heuristic
approaches to reduce the number of possible combinations or by finding more efficient algorithms.

12.	 Deodorant comments are comments that are added to explain or justify bad or smelly code
instead of fixing it. When you find them, you should refactor the code to make it self-explanatory
and remove the need for such comments.

Chapter 11 439

13.	 When you have bad code but don’t know how to fix it, you should seek help from colleagues,
mentors, or online programming communities for guidance and code review.

14.	 Online programming forums, such as Stack Overflow, are good places to ask questions and get
answers when you’re facing programming issues.

15.	 A long parameter list can be reduced by using parameter objects, creating builder patterns, or
grouping related parameters into structures or classes.

16.	 A large method can be refactored by breaking it into smaller, more focused methods that
perform specific tasks. This improves readability and maintainability.

17.	 There is no fixed maximum length for a clean method, but a common guideline is to keep
methods concise and focused, typically no more than a few dozen lines. However, readability
and maintainability should be the primary considerations.

18.	 The ideal cyclomatic complexity for a program should generally be within a range of 1 to 10,
although this can vary depending on the specific project and context.

19.	 The ideal depth of inheritance should be shallow, preferably limited to one or two levels. Deep
inheritance hierarchies can lead to complex and tightly coupled code.

20.	 Speculative generality occurs when code includes unnecessary abstractions, such as interfaces
or classes, that serve no current purpose. To address this, remove these unused abstractions.

21.	 If you encounter an oddball solution, consider refactoring it so that it conforms to established
coding standards and best practices. It’s essential to maintain consistency in the code base.

22.	 If you encounter a temporary field, you can refactor it by moving the field to a more appropriate
scope, such as a local variable, or by reevaluating its necessity in the code.

23.	 A data clump is a code smell where the same group of data or parameters is frequently passed
around together. To address it, you can create a new data structure (for example, a class or
struct) to encapsulate the related data.

24.	 Refused bequest is a code smell that occurs when a subclass inherits from a base class but
only uses a small portion of the inherited methods or properties. To address it, refactor the
inheritance hierarchy so that it matches the needs of the subclass.

25.	 Message chains break the Law of Demeter, which states that an object should not have to
navigate multiple other objects to access its dependencies. Message chains can be refactored
by introducing intermediate objects or using encapsulation to hide the chain.

26.	 To refactor message chains, you can introduce methods in intermediate objects that delegate
the calls, reducing the coupling between objects and adhering to the Law of Demeter.

27.	 Feature envy occurs when one class accesses the data or methods of another class excessively. It
suggests that the code should be refactored to move the functionality to the class where it belongs.

28.	 To remove feature envy, you can use techniques such as the move method or extract class to
relocate the code that’s overly dependent on another class.

Assessments440

29.	 To replace switch statements that return objects, you can use the factory method or strategy
design patterns to encapsulate the logic and provide a more flexible and maintainable solution.

30.	 if statements that return objects can be replaced by using polymorphism, such as creating
subclasses or implementing interfaces, to handle different cases more elegantly and maintainably.

31.	 Solution sprawl refers to a code base with an excessive number of projects, classes, or files,
making it challenging to manage. To tackle this, you can consolidate related code, eliminate
redundancy, and simplify the architecture.

32.	 The Tell, Don’t Ask principle suggests that code should instruct objects to perform actions
rather than querying objects for their state and making decisions based on that state.

33.	 The Tell, Don’t Ask principle gets broken when code excessively queries object state and makes
decisions externally instead of delegating the behavior to the objects themselves.

34.	 Symptoms of shotgun surgery include making changes to one part of the code base, resulting
in the need to make numerous changes in other parts. It can be addressed by refactoring to
reduce interdependencies between classes.

35.	 Lost intent occurs when code no longer reflects the original design or intent due to numerous
modifications. To address this, refactor the code to clarify its purpose and document changes.

36.	 Loops can be refactored by using higher-level abstractions such as LINQ queries, introducing
helper methods, or employing recursion where appropriate. These refactorings improve
readability and maintainability.

37.	 Divergent change is a code smell where a class is frequently modified for various reasons
unrelated to its primary responsibility. To refactor it, you can extract the divergent parts into
separate classes or modules to improve the separation of concerns.

Chapter 12
1.	 Functional programming is a programming paradigm that treats computation as the evaluation

of mathematical functions and avoids mutable data and state changes. It differs from imperative
programming, where programs are written as sequences of statements that change the
program’s state.

2.	 Functional data transformation in C# can be achieved using pure functions and LINQ. By using
LINQ methods such as Select, Where, and Aggregate, developers can transform data without
modifying the original data structure. For example, numbers.Select(x => x * 2) will create a
new sequence with each element doubled.

3.	 Functional error handling in C# involves representing errors as data instead of using exceptions.
Option types and the Maybe monad are data structures that are used for error handling. Option
types represent the presence or absence of a value, while the Maybe monad represents the success
or failure of an operation. Using these constructs, developers can handle errors explicitly and
create more reliable and maintainable code.

Chapter 13 441

4.	 Functional pattern matching in C# can be accomplished using the switch statement with pattern
matching, which was introduced in C# 7.0. It allows developers to match against types, constant
values, or custom patterns to execute specific code blocks based on the matched pattern. For
example, in switch (shape) { case Circle circle: ... }, the code block will execute if shape is of
the Circle type.

5.	 Immutability in functional programming means that data cannot be changed after creation. In
C#, immutability is achieved using read-only properties, read-only fields, and immutable data
structures. Immutability helps with concurrency and thread safety by eliminating the risk of
data corruption and race conditions when multiple threads access the same data.

6.	 Higher-order functions in functional programming are functions that take other functions as
arguments or return functions as results. In C#, they can be used to create more modular and
reusable code by parameterizing behavior. For example, a higher-order function can take a
sorting function as an argument to sort a collection in different ways.

7.	 Concurrency with functional programming in C# involves using immutable data, pure
functions, and asynchronous programming with async and await. Immutable data ensures
that concurrent operations don’t interfere with shared state, pure functions prevent side effects,
and asynchronous programming allows non-blocking concurrent execution, leading to more
responsive and scalable applications.

Chapter 13
1.	 .NET MAUI, or .NET Multi-platform App UI, is an open-source framework for building native

cross-platform mobile and desktop apps using C# and XAML. It’s an evolution of Xamarin.
Forms and allows developers to create apps that run on multiple platforms, including Android,
iOS, macOS, and Windows, while sharing a single codebase. .NET MAUI provides a unified
API and tooling, making it easier to build applications that work consistently across different
devices and platforms.

2.	 MVVM, which stands for Model-View-ViewModel, is a design pattern used in software
development to separate the user interface (View) from the application’s logic and data (Model)
by introducing an intermediary component called ViewModel. With .NET MAUI, using the
MVVM pattern can lead to better code organization, maintainability, and testability. MVVM
helps keep the user interface code (XAML) separate from the application’s business logic,
making it easier to manage and maintain. It also enables better support for unit testing, as the
ViewModel can be tested independently of the UI.

3.	 The CommunityToolkit.Mvvm is a library provided by the .NET community that extends
the MVVM capabilities in .NET MAUI. It offers various MVVM-related components, including
RelayCommand, ObservableObject, and other utility classes. By using this toolkit,
developers can achieve cleaner and more maintainable code in .NET MAUI applications. It simplifies
common MVVM tasks and provides tools for implementing the MVVM pattern effectively.

Assessments442

4.	 You add the QueryProperty to a ViewModel that has a name and queryid argument that
are both strings. This allows you to pass parameters into the ViewModel. In the AppShell
constructor, you use Rounting.RegisterRoute to register the route to your View. Then
in your navigation command, you navigate to the View passing in the parameters.

5.	 We register ViewModels by adding them as Singletons or Transients to builder.Services
in the MauiProgram.CreateBuilder method.

6.	 The BindingContext.

7.	 An ObservableObject is a base class often used in the Model-View-ViewModel (MVVM)
architectural pattern. It typically implements the INotifyPropertyChanged interface.
The purpose of an ObservableObject is to notify subscribers (often the user interface)
when the properties of the object change. By doing so, it ensures that the user interface stays
in sync with the underlying data. In .NET MAUI, ObservableObject classes are often
used as base classes for ViewModels, enabling clean and efficient data binding and updates
in the user interface.

8.	 An ObservableProperty is a property within an ObservableObject that is designed
to notify subscribers when its value changes. It’s commonly used in MVVM patterns to expose
data in a ViewModel. When the value of an ObservableProperty changes, it triggers the
PropertyChanged event (from the INotifyPropertyChanged interface), informing
the UI that the property’s value has been updated. This allows for automatic updates in the user
interface when the bound property changes.

9.	 A RelayCommand is a class used to handle commands in MVVM-based applications. It
encapsulates a method (an action) that can be executed in response to user interactions, like
button clicks or gestures. The primary purpose of a RelayCommand is to enable clean and
consistent command handling in the ViewModel layer. It’s often used to bind user interface
elements (e.g., buttons) to specific actions or behaviors, allowing the ViewModel to execute
these actions when the user interacts with the UI.

10.	 A CollectionView is a user interface component in .NET MAUI designed for displaying
collections of data in a user-friendly manner. It provides features for data binding, grouping,
sorting, filtering, and presenting data in various layouts (e.g., lists or grids). CollectionView
is commonly used to visualize data from ViewModel collections in a structured and customizable
way, making it easier to create interactive and responsive user interfaces.

11.	 An ObservableCollection is a specialized collection class in .NET that is commonly
used in MVVM scenarios, including .NET MAUI. It extends the standard .NET Collection
classes by implementing the INotifyCollectionChanged interface. The key feature of
an ObservableCollection is its ability to automatically notify the UI when items are
added, removed, or modified within the collection. This automatic notification ensures that
the user interface stays synchronized with the underlying data, making it a suitable choice for
presenting data in MVVM-based applications, especially when the data can change dynamically.

Chapter 14 443

Chapter 14
1.	 Microservices architecture is an architectural style where complex applications are broken

down into small, independent services, each running in its own process and communicating
over lightweight protocols.

2.	 Some benefits include improved scalability, flexibility, maintainability, faster development
cycles, and better isolation of failures.

3.	 Microservices communicate with each other through APIs, often using lightweight protocols
such as HTTP/REST or message brokers in an event-driven communication pattern.

4.	 Service discovery enables microservices to locate and communicate with other services
dynamically in a distributed environment, where the locations of services may change frequently.

5.	 Containerization, such as using Docker, simplifies the deployment process, ensures consistency
across various environments, and allows microservices to be packaged with their dependencies.

6.	 Service resilience involves isolating failures, using circuit breakers, implementing retries and
timeouts, and monitoring service health for prompt responses to issues.

7.	 Automated testing, including unit, integration, and end-to-end testing, helps ensure the
correctness and reliability of microservices, supporting frequent and safe deployments.

Index

A
AAA TDD pattern

example 169, 170
access control 234, 243
Act phase 169
adapter pattern 311
Agile methodology 10

adaptability 10
continuous improvement 10
customer collaboration 10
iterative development 10
self-organizing teams 10

algorithmic optimization 237
Amazon 427
Amazon Elastic Container

Service (ECS) 409
Amazon Simple Notification

Service (SNS) 413
API design 196

neglecting, issues 198
API design, considerations

clarity 196
consistency 196
maintainability 197
observability 197
reliability 197

reusability 196
security 197
testability 197

API design process 200-202
API development, in C# 207

API, deploying 209
API structure, defining 207
authentication and authorization,

implementing 208
continuous integration/continuous

deployment (CI/CD) 209
CRUD operations, implementing 208
data modeling 207
dependency injection, configuring 209
development environment, setting up 207
documentation 209
errors, handling 208
framework, selecting 207
logging and monitoring 209
middleware, adding 208
performance optimization 209
route, handling 208
scale and maintain 210
security, implementing 209
testing 208
validation, implementing 208
versioning, implementing 208

Index446

API gateway 406, 411
API aggregation 411
benefits 411, 412
caching 412
load balancing 412
monitoring and analytics 412
rate limiting 412
request routing 411
security and authentication 412
service versioning 412
transformation and response formatting 412

API security 202
risks and mitigations 202-205

application-level code smells 302
Boolean blindness 302, 303
combinatorial explosion 304
contrived complexity 305, 306
data clump 306, 307
deodorant comments 307
duplicate code 307
lost intent 308
mutation of variables 308-310
oddball solution 311-313
shotgun surgery 313, 314
solution sprawl 314
uncontrolled side effects 315

application-level transactions 240
application life cycle management

(ALM) 403
application life cycle management

(ALM), microservices
CI/CD 404
containerization and orchestration 404
continuous improvement 405
design and development 403
fault tolerance and resilience 405
monitoring and observability 404
scalability and load management 404

security and access control 405
testing and quality assurance 404
versioning and source control 404
version upgrades and retirement 405

application programming
interface (API) 192

used, for helping consumers to build
loosely coupled applications 192, 193

uses 192
versioning 403

AppShell.xaml file 377
App.xaml file 377
arguments 116
Arrange, Act, Assert (AAA) pattern 169
Arrange phase 169
array 89
artificial intelligence (AI) 105
aspect framework

architectural framework, extending 257, 258
behaviors, injecting before and after

method execution 255-257
developing 255
extending 255

aspect-oriented programming
(AOP) 227, 251, 252, 307

benefits 253
elements 252
frameworks 253
working, with PostSharp 254, 255

Assert class 173-175
Assert phase 169
async 359-361
asynchronous processing 238, 413

example 359, 360
asynchronous programming 358
attribute-based access control (ABAC) 234
auditing 229, 242

Index 447

auditing and compliance, as
cross-cutting concerns

best practices, for developers 244
audit logging 242
authentication 128
authorization 128, 228, 233
await 359-361
AWS Lambda 410
Azure DevOps CI/CD pipeline

unit tests, integrating 184-186
Azure Functions 410

B
bad code

versus good code 2, 3
behavior 100
behavior-driven development (BDD) 18

benefits 18, 19
BenchmarkDotNet

URL 310
black sheep method 327
Boolean data blindness 302, 303
branches 27
break statement 113
brittle tests 187
Bulkhead pattern 407
business rule validation 241

C
caching 228, 236-238

data caching 236
fragment caching 236
HTTP response caching 236
object caching 237
query result caching 236

caching, as cross-cutting concerns
strategies, for developers to adopt 237

Castle.DynamicProxy
using 276, 277

Category attribute 174
C# coding standards and best practices

reference link 29
CD 419

practices 419
C# design patterns

reference link 29
centralized exception handling 232
choreography 407
CI 418

practices 419
with GitHub Actions and CodeQL 296, 297

CI/CD 418
Circuit Breaker pattern 406
class definition 99
classes 335

organizing 54-58
responsibility 58, 59

class file
organizing 60, 61

class-level code smells 315
cyclomatic complexity 315
divergent change 319
downcasting 320
excessive literal use 320
feature envy 320-322
inappropriate intimacy 322
indecent exposure 322
large class 323
lazy class 323
middleman class 323
orphan class, of variables and constants 323
primitive obsession 324, 325
refused bequest 326

Index448

speculative generality 327
Tell, Don’t Ask software principle 327
temporary fields 327

clean code, for API development
collaboration 199
consistency 199
effective documentation 199
error handling 200
maintainability 198
readability 198
reduced cognitive load 199
refactoring 199
simplicity 198
testability 199

clean code principles 135, 198
Dependency Inversion Principle

(DIP) 135, 136
Open/Closed Principle (OCP) 135, 136
Single Responsibility Principle (SRP) 135

clean functions 97
cloud APIs 205, 206

cons 206
pros 206
security cons 206
security considerations 206, 207
security pros 206

code analysis
performing 280, 281

code block 112
code conflict resolution 37

manual resolution 37
merge 37
rebase 37

code conflicts 37
code coverage analysis

using, in Visual Studio 2022 178
code duplication

avoiding 113-115

code indentation 112
code profiling 238
Code Project

URL 29
CodeQL 297

utilizing, for continuous integration 297
code quality 25
code review 25

effect of feedback, on reviewees 40-42
leader requisites 32
leading 32, 33
preparing for 30, 31
situations 47, 48

code reviewer 26
code reviewer, aspects for complete

and thorough review 42
architectural guidelines, and

design patterns 45, 46
company’s coding guidelines and

business requirements 43
documentation 45
formatting 43, 44
naming conventions 43
performance and security 47
tests 44, 45

code review process 29, 30
code smells 38, 301

application-level code smells 302
class-level code smells 315
method-level code smells 327

coding conventions 5
code formatting 5
code reuse 6
coding standards 6
comments 5
error handling 6
indentation and braces 5

Index 449

Microsoft coding conventions adoption 6
naming conventions 5

coding methodologies 10
Agile 10
behavior-driven development (BDD) 18, 19
Crystal 13, 14
DevOps 16
domain-driven design (DDD) 19, 20
Extreme Programming (XP) 15
feature-driven development (FDD) 16, 17
Kanban 11, 12
Lean 12, 13
need for 3, 4
Rapid Application Development

(RAD) 20, 21
Scrum 11
Six Sigma 14
Spiral Model 21
test-driven development (TDD) 17, 18

coding principles 5
DRY principle 5, 9
KISS principle 5, 8
modularity principle 5-7
need for 3, 4
Occam’s razor 9
SOLID principles 5, 7
YAGNI principle 5, 8

coding standards 4
code documentation 4
code formatting 4
code reuse 4
code reviews 4
error handling 4
naming conventions 4
need for 3, 4

cohesion 65
high cohesion 65, 70
low cohesion 65, 68, 69

combinatorial explosion 304
comments 125

inline comments 126
XML documentation comments 125, 126

commits 26
CommunityToolkit.Mvvm 381
compliance 229, 242

with security standards 243
compliance auditing and reporting 243
component testing 420
concurrency 338
concurrency models (actors) 361
concurrency, with functional

programming 358
asynchronous programming 358
functional data transformation 358
immutable data 358
pure functions 358

const construct 105
constructor 175
containerization 409

benefits 409
containers 409
content management system (CMS) 245
continuous delivery (CD) 32
continuous deployment (CD) 32
continuous integration and

deployment (CI/CD) pipeline
unit tests, integrating 184

continuous integration (CI) 27, 31
contrived complexity 305, 306, 328
coupling

loose coupling 65-68
tight coupling 65-67

CQRS 406
Create, Read, Update, and Delete

(CRUD) operations 208
critical feedback 49

Index450

cross-cutting concerns 227, 228
addressing, reasons 230

cross-cutting concerns, in
software development

auditing 229, 242, 243
authorization 228, 233, 234
caching 228, 236, 237
compliance 229, 242, 243
cross-cutting validation 229, 241, 242
error handling 228, 232, 233
exception management 228, 232, 233
internationalization 229, 244, 245
localization 229, 244, 245
logging 228, 231, 232, 246
monitoring 229, 246
performance optimization 228, 237, 238
security 228, 233, 234
transaction management 229, 239, 240

cross-cutting concerns reusable
library project 258, 259

caching concern, adding 259, 260
configuration settings concern, adding 274
exception-handling concern,

adding 263, 264
file logging capabilities, adding 260, 261
instrumentation concern, adding 274, 275
logging concern, adding 262, 263
resource pool concern, adding 273
security concern, adding 264-267
transaction concern, adding 272, 273
validation concern, adding 267-272

cross-cutting validation 229
cross-origin resource sharing

(CORS) policies 195
cross-site scripting (XSS)

attacks 46, 201, 234, 421
Crystal methodology 13

continuous integration 14

incremental delivery 13
principles 13
reflective improvement 14
teamwork 13

C# test
best practices 188
brittle tests 187
erratic tests 187
flaky tests 187
fragile tests 186
hardcoding values 187
overuse of mocks, or stubs 187
test data issues 187
test interdependencies 187

currency and number formats 245
currying 357

versus partial application 358
custom exceptions 147

creating 147, 148
cyclomatic complexity 315, 327

readability of conditional checks, improving
within if statement 318, 319

switch statements, replacing with
factory pattern 316-318

D
database optimization 238
database transactions 239
data caching 236
data clump 306, 307
data encryption 234
data format validation 241
data immutability 100
data mocking 180-182

challenges 182-184
data privacy and protection 243
DataRow attribute 173

Index 451

data structures
array 89
struct 90
tuple 89

DataTestMethod attribute 173
data transfer objects (DTOs) 102
date and time formats 245
dead code 328
debug logging 231
declarative programming (DP) 105
decoupling 413
deep learning (DL) 105
denial-of-service (DoS) attacks 47
deodorant comments 307
dependency diagram

generating 289
dependency injection (DI) 74, 142, 165

enabling, with core .NET
service classes 76-78

example 75, 76
Dependency Inversion Principle

(DIP) 7, 94, 95, 135, 136, 167
using, with exception handling

in C# 142-144
DevOps 16

automation 16
culture 16
measurement 16

dispose method 175
distributed transactions 240
divergent change 319
documentation 45
documentation generation

commenting for 61-64
domain-driven design (DDD) 19, 402

benefits 19, 20
Domain Name System (DNS) 408
domain-specific validation 242

Don’t Repeat Yourself (DRY)
principle 5, 9, 103, 113

downcasting 320
draft PRs

reference link 30
duplicate code 307
dynamic AOP

with Castle.DynamicProxy 276, 277

E
effective unit tests

code coverage analysis, using in
Visual Studio 2022 178

ensuring 179
stubs, using 179, 180
tips, for writing 177, 178

Either monad 348, 349
employee management example

mocking and unit testing, with correct
exception handling 156-161

encapsulation 88
example 88

end-to-end tests 152, 421
writing, to test exception handling 155

erratic tests 187
error handling 228, 232
error handling and exception management,

as cross-cutting concerns
best practices, for developers 233

error logging 231
error logging and reporting 232
error recovery 232
Etsy 427
event broker 413
event-driven communication 412

asynchronous processing 413
characteristics 413

Index452

decoupling 413
distributed systems challenges 413
event broker 413
events 413
event sourcing and CQRS 413
publish-subscribe pattern 413
scalability 413

events 413
event sourcing pattern 406
exception handling 131, 132

best practices 144, 145
common mistakes 149-151
end-to-end testing 155
integration testing 153-155
testing 151, 152
try-catch block 132, 133
try-catch-finally block 133-135
unit testing 152, 153

exception management 228, 232
exception propagation and wrapping 233
exceptions

handling, in FP 123-125
excessive data return 328
Extreme Programming (XP) 15

continuous integration 15
pair programming 15
refactoring 15
small releases 15
test-driven development (TDD) 15
values 15

F
Fact attribute 175
fault tolerance 415

distributed consistency 415
failover and replication 415
high availability 415

redundancy 415
state management 415

feature-driven development (FDD) 16, 17
feature envy 320, 328
Feature Toggle pattern 407
feedback

providing, as reviewer 49
responding to, as reviewee 49

first-class functions 339
flaky tests 187
four-phase pattern, unit testing

reference link 175
fragile tests 186
fragment caching 236
freeloading class 323
functional composition 105, 343
functional concurrency patterns 360

async/await 361
concurrency models (actors) 361
Functional Reactive Programming

(FRP) 361
immutable data 360
map operation 360
pure functions 360
reduce operation 360
Software Transactional Memory (STM) 361

functional data
transformation 338, 350, 351, 358

functional error handling 348, 349
Either monad 348, 349
Maybe monads 348, 349
option types 348, 349
railway-oriented programming (ROP) 348
Result objects 350

functional pipelines 338, 350, 351
functional programming

(FP) 97, 98, 333-335, 338
avoidance, of shared state 101

Index 453

concurrency 338
concurrency and parallelism 101
easier testing 102
examples 105-109
exceptions, handling 123-125
functional composition 101
functional data transformation 338
functional pipelines 338
higher-order functions 338
immutability 101, 338
lambda expressions 338
Maybe monad 338
option types 338
parallelism 338
pattern matching 338
pure functions 101, 338
type systems 101
versus imperative programming 336, 337
versus object-oriented programming

(OOP) 99, 100
functional programming (FP), in C#

benefits 105
Functional Reactive Programming

(FRP) 361
functional requirements (FRs) 228
function definition 100
functions 339

G
gang-of-four (GoF) software

design patterns 29
General Data Protection

Regulation (GDPR) 243
Git 26
GitHub 26, 33

branches 27
commits 26

pull requests 27
repositories 26
resources for learning 28, 29
URL, for official documentation 29

GitHub Actions 297
utilizing, for continuous integration 297

GitHub Guides
URL 28

GitHub Learning Lab
URL 28

GitHub Skills
URL 33

GitHub usage in code review process 27
continuous integration (CI) 27
discussion and feedback 27
history and documentation 28
iterative improvements 28
merge and deployment 28
pull requests (PRs) 27
reviewers 27
status checks 28

God method 117
God object 117, 323
good code

versus bad code 2, 3
graceful degradation 232
graphical user interfaces (GUIs) 379

H
hardcoding values 187
Health Insurance Portability and

Accountability Act (HIPAA) 243
high cohesion 65, 70
higher-order functions 104, 338, 340-342

using 344
horizontal scaling 421

container orchestration 422

Index454

load balancing 422
statelessness 422

HTTP requests 284
HTTP response caching 236
HTTP verbs 194, 208

CONNECT 196
DELETE 195
GET 194
HEAD 195
OPTIONS 195
PATCH 195
POST 194
PUT 195
TRACE 195

Hypertext Transfer Protocol (HTTP) 194

I
idempotent operations 193

DELETE 194
GET 194
PUT 194

ILogger abstraction 143
immutability 101, 104, 338, 342

benefits 342
immutable classes

cons 383
considerations 383
pros 383

immutable data 358, 360
immutable objects 85, 86

records, using to create 87
immutable structs

cons 382
considerations 383
pros 382

imperative programming 334
versus functional programming 336, 337

incident response (IR) and forensics 243
indecent exposure 322
informational logging 231
Infrastructure as Code (IaC) 16
inline comments 126
input validation 127, 234, 241
integration testing 420
integration tests 151

writing, to test exception handling 153-155
interface-oriented programming

(IOP) 71-74
Interface Segregation Principle

(ISP) 7, 93, 94
Intermediate Language (IL) code 285
internationalization 229, 244
Internet Information Services (IIS)-

hosted web applications 284
inversion of control (IoC) 74

enabling, with core .NET
service classes 80, 81

example 78, 79

J
JetBrains dotTrace profiler 283

using 284, 285
JetBrains ReSharper 285

benefits 286
using 285-295

JSON Web Token (JWT) 234

K
Kanban methodology 11

principles 12
Keep It Simple, Stupid (KISS)

principle 5, 8, 305
Key Management Service (KMS) 417

Index 455

key performance indicators (KPIs) 14
Kubernetes

microservices, managing with 410

L
lambda expressions 104, 338-340

using 343
Language-Integrated Query (LINQ) 105
Law of Demeter 81, 82

bad example 84
good example 83, 84

lazy class 323
lazy evaluation 353-355
lazy loading 238
Lean software development 12

principles 12, 13
LINQ

Select method, using 344
Where method, using 344

Liskov Substitution Principle (LSP) 7, 91-93
Live Unit Testing 177
localization 229, 244
localization and internationalization,

as cross-cutting concerns
best practices, for developers 245, 246

logging 228, 231, 246
debug logging 231
error logging 231
informational logging 231
metrics 231

logging and monitoring, as cross-
cutting concerns

best practices, for developers 246, 247
LoggingExceptionHandler class 143
loose coupling 65, 67, 68
low cohesion 65, 68, 69

M
machine learning (ML) 105
MainPage.xaml file 377
MainProgram.cs file 377
map operation 360
MAUI XAML structure 377

data binding 378
layouts 378
page element 378
resource definitions 378
views and controls 378

Maybe monad 338, 344-349
memory management 126
message chains 329
method-level code smells 327

black sheep method 327
contrived complexity 328
cyclomatic complexity 327
dead code 328
excessive data return 328
feature envy 328
identifier size 328
inappropriate intimacy 329
lazy methods 329
long lines 329
long methods 329
long parameter lists 329
message chains 329
middleman method 330
oddball solutions 330
speculative generality 330

methods
keeping small 110, 111

methods, with duplicated code
problem 103
solution 103

Index456

methods, with excessive length
problem 103
solution 103

methods, with high cyclomatic complexity
problem 102
solution 102

methods, with magic numbers
or hardcoded values

problem 103
solution 103

methods, with nested control structures
problem 103
solution 103

methods, with poor documentation
problem 104
solution 104

methods, with poor error handling
problem 103
solution 103

methods, with poor naming
problem 103
solution 103

methods, with side effects
problem 102
solution 102

methods, with too many parameters
problem 102
solution 102

metrics 231
microservice compatibility 423

API documentation 424
backward compatibility 423
forward compatibility 423
graceful deprecation 424
service discovery and registration 424
testing and version management 424

microservices 395, 396
API-based communication 397

application life cycle management
(ALM) 403-405

challenges 398
challenges, overcoming 398, 399
complexity management 397
continuous deployment 397
decomposition 396
design process, for building 401, 402
independence 396
managing, with Kubernetes 410
monitoring and observability 397
real-world examples 427, 428
resilience and fault tolerance 397
scalability 397
team autonomy 397
technology diversity 397
versus monoliths 400, 401

microservices architecture patterns 405
API gateway 406
Bulkhead pattern 407
choreography 407
Circuit Breaker 406
considerations 425, 426
CQRS 406
event sourcing 406
Feature Toggle pattern 407
orchestration 407
Polyglot Persistence 407
Saga pattern 406
service discovery 406
service registry 406

microservices best practices
automated testing 425
CI/CD 425
containerization 424
container orchestration 425
decentralized data management 424
graceful degradation 425

Index 457

monitoring and observability 425
service contracts and APIs 424
service independence 424
single responsibility principle (SRP) 424

microservice scaling 421
horizontal scaling 421
vertical scaling 422

microservices, case studies 427
Amazon 427
Etsy 427
Netflix 427
SoundCloud 427
Uber 427
Zalando 427

microservices security 417
API gateway security 417
authentication 417
authorization 417
container security 418
continuous security testing 418
error handling 417
input validation and sanitization 417
least privilege principle 418
logging and monitoring 418
regular security audits 418
secrets management 417
secure communication 417
service-to-service communication 417

microservices-specific challenges 419
microservice testing 420

component testing 420
end-to-end testing 421
integration testing 420
performance testing 421
security testing 421
unit testing 420

microservice versioning 423
header versioning 423

media type versioning 423
Semantic Versioning (SemVer) 423
URL versioning 423

Microsoft coding conventions adoption 6
Microsoft .NET MAUI 367
middleman class 323
middleman method 330
mock data 180
models 381
Model-View-Controller (MVC) pattern 46

commands 380
data binding 380
dependency injection 380
Model 379
View 379
ViewModel 380
workflow 380

Model-View-ViewModel (MVVM)
pattern 46, 255, 379

modularity principle 5-7
monadic methods 116
monitoring 229, 246
Moq 180
MSTest

Assert class 173
DataRow attribute 173
DataTestMethod attribute 173
TestClass attribute 173
TestCleanup attribute 173
TestContext property 173
TestInitialize attribute 173
TestMethod attribute 173
using 173

multilingual content management 245
multiple parameters

avoiding 115-117
multithreading 238
mutability 100

Index458

mutation of variables 308-310
mutual TLS (mTLS) authentication 417

N
Netflix 427
niladic methods 116
non-functional requirements (NFRs) 166
not idempotent operations

POST 194
NUnit 174

Assert class 174
Category attribute 174
SetUp attribute 174
TearDown attribute 174
Test attribute 174
TestCase attribute 174
TestContext object 174
TestFixture attribute 174
ValueSource attribute 174

O
OAuth 2.0 (OAuth2) 219

authorization server 219
client 219
flows 219
resource owner 219
resource server 219

object caching 237
object instantiation 99
object-oriented programming

(OOP) 98, 251, 335
versus functional programming (FP) 99, 100

observability 416
application-level events 417
contextual logging 416

distributed tracing 416
interactive exploration 417
metrics aggregation and correlation 416

Occam’s razor coding principle 9
oddball solution 311, 330
on-premises APIs 205

cons 205
pros 205
security cons 206
security considerations 206, 207
security pros 205

Open Authorization (OAuth) 234
Open/Closed Principle

(OCP) 7, 91, 135, 136
using, with exception handling

in C# 138-142
OpenID Connect (OIDC) 219

ID token 219
relationship, with OWASP 219
roles 219
UserInfo endpoint 219

Open Web Application Security
Project (OWASP) 210

reference link 211
security principles 220

optional feedback 49
option types 338, 344, 348, 349

example 345, 346
orchestration 407, 409
order of execution (OOE) 187
orphan classes 323

issues 324
OWASP adherence, in C# API development

significance 210, 211
OWASP API Security Project 210
OWASP-compliant API

creating 211-214

Index 459

OWASP-compliant OAuth 2.0 and
OIDC implementation

setting up 220-223
OWASP-compliant two-factor

authentication (2FA)
implementing 215-218

OWASP Top 10 210

P
paradigm philosophy 100
parallelism 338
partial application 357

versus currying 358
pattern matching 338, 355-357
Payment Card Industry Data Security

Standard (PCI DSS) 243
peer code review process 48
peer reviewer 29
performance monitoring 238
performance optimization 228, 237

algorithmic optimization 237
asynchronous processing 238
caching 238
code profiling 238
database optimization 238
lazy loading 238
multithreading 238
performance monitoring 238
resource management 238

performance optimization, as
cross-cutting concern

approaches, for developers 238, 239
performance testing 421
personally identifiable

information (PII) 243
Polyglot Persistence pattern 407
polymorphism 72

positive feedback 49
PostSharp 227, 253

aspect composition 254
attribute-based programming 253
build pipeline considerations 275, 276
compile-time weaving 253
configuration and fine-grained control 254
integration, with existing code bases 254
SoC 254

primitive obsession 324, 325
profiling options

Line-by-Line 284
Sampling 284
Timeline 284
Tracing 284

programmer 26
publish-subscribe pattern 413
pull requests 27

issuing 33-36
responding to 38, 39

pure functions 100, 101, 104, 338, 358, 360
advantages 342
example 343

Q
query result caching 236
quick actions

using 282, 283

R
railway-oriented programming (ROP) 348
Rapid Application Development (RAD) 20

active user involvement 20
construction 20
development 21
iterative development 20

Index460

prototyping 20
requirements planning 20
testing 21
timeboxing 20
user design 20

Reactive Extensions (Rx) 361
readonly construct 105
records 87

deconstruction 87
immutable by default 87
using, to create immutable objects 87
value equality 87
with expression 87

recursion 362
working 362, 363

Red-Green-Refactor 168
reduce operation 360
refactoring 301
refused bequest 326
repositories 26
Representational State Transfer (REST) 192
ReSharper 117
ReSharper type dependency

diagram 290, 291
resource management 238, 240
resources

disposing 127
Result objects 350
reviewer

feedback, providing as 49
reviewers 27
role-based access control (RBAC) 234

S
Saga pattern 406
Scrum methodology 11

daily scrum 11

development team 11
product owner 11
scrum master 11
sprint planning 11
sprint retrospective 11
sprint review 11

secure communication 234
security 127, 228, 233
security and authorization, as

cross-cutting concerns
benefits, to developers 235, 236
best practices, for developers 235

security auditing and logging 234
security configuration management

(SCM) 234
security IR (SIR) frameworks 243
security testing 421
sensitive data

protecting 128
separation of concerns (SoC) 100, 253
serverless computing 410

event-driven architecture 410
loose coupling 411
rapid development and iteration 411
reduced operational overhead 411
scalability and cost efficiency 410
simplified deployment 411

service discovery 406-408
service monitoring 416

altering 416
dashboarding 416
integration, with incident management 416
logging 416
long-term storage 416
metrics collection 416

service registration 408
service registry pattern 406

Index 461

service resilience 414
automatic healing 414
backpressure and throttling 414
fault isolation 414
graceful degradation 414
monitoring and alerting 414
retries and timeouts 414

SetUp attribute 174
shotgun surgery 313, 314
Single Responsibility Principle

(SRP) 7, 90, 135, 167
implementing 117-122
using, with exception handling

in C# 136-138
Six Sigma methodology 14

Analyze phase 14
Control phase 14
Define phase 14
Improve phase 14
Measure phase 14

skip attribute 175
software development kits (SDKs) 201
software development life cycle

(SDLC) 29, 165, 236
Software Transactional Memory (STM) 361
SOLID principles 5, 7

Dependency Inversion Principle
(DIP) 7, 94, 95

Interface Segregation Principle
(ISP) 7, 93, 94

Liskov Substitution Principle (LSP) 7, 91-93
Open-Closed Principle (OCP) 7, 91
Single Responsibility Principle (SRP) 7, 90

SOLID software methodology 90
solution sprawl 314
SoundCloud 427
Spiral Model 21

engineering phase 21

evaluation phase 21
planning phase 21
risk analysis phase 21

SQL queries 284
state 100

in classes 335
in immutable structs/records 336

state handling 100
static object 85
struct 90
stubs

using 179, 180

T
Task Parallel Library (TPL) 145, 351
TearDown attribute 174
Telerik JustDecompile 295

using 295, 296
Tell, Don’t Ask software principle 327
temporary fields 327
testable code

constructor injection dependencies,
managing 167

interface dependencies, defining 166, 167
SOLID principles, using 167
static dependencies, avoiding 167
writing 166, 167

Test attribute 174
TestCase attribute 174
Test class 175
TestClass attribute 173
TestCleanup attribute 173
TestContext object 174
TestContext property 173
test data issues 187
test doubles

reference link 175

Index462

test-driven development
(TDD) 17, 56, 165, 168, 421

benefits 17, 18
testing framework

attribute comparisons 172
attribute mapping, to four-phase

testing pattern 176
MSTest, using 173
NUnit 174
selecting 170-172
xUnit 175

TestInitialize attribute 173
test interdependencies 187
TestMethod attribute 173
tests 44
test smells 186
Theory attribute 175
tight coupling 65-67
time zone handling 245
to-do application

Android version 370-373
building 374-377
CommunityToolkit.Mvvm, adding 380, 381
configuring 391, 392
DetailPage view, adding 390, 391
DetailsViewModel, adding 387
MainPage view, modifying 387-390
MainViewModel, adding 385-387
MAUI XAML structure 377-379
models 381, 382
MVVM pattern 379, 380
ViewModels 384, 385
views 387
Windows version 368, 369

TPL AggregateException exception
await, using inside async methods 145
exception hierarchy, flattening 146
exceptions, handling as they occur 147

handling 145
individual exceptions, handling 146

TPL Dataflow
example 351-353

trait attribute 175
transaction management 229, 239
transaction management, as

cross-cutting concern
best practices, for developers 240, 241

transaction monitoring and logging 240
triadic methods 116
try-catch block 132, 133
try-catch-finally block 133-135
tryGit

URL 29
tuple 89

U
Uber 427
unclean methods 102-104
uncontrolled side effects 315
Uniform Resource Identifier (URI) 194
unit 166
unit tests 151, 166, 420

integrating, into Azure DevOps CI/
CD pipeline 184-186

integrating, into continuous integration
and deployment (CI/CD) pipeline 184

writing, to test exception handling 152, 153
Universal Windows Platform

(UWP) applications 284
user authentication 233, 234
user-friendly error messages 233
user interface localization 244

Index 463

V
validation 241

business rule validation 241
data format validation 241
domain-specific validation 242
input validation 241

validation, as cross-cutting concern
best practices, for developers 242

ValueSource attribute 174
variable declaration 126
vertical scaling 422

limitations 422
resource allocation 422

ViewModels 384
commands 384
communication, with Model 384
data binding 384
INotifyPropertyChanged interface 384
presentation logic 384
separation of concerns 384
testability 384
validation 384

views 387
Visual Studio 2022

code coverage analysis, using 178
Visual Studio tests

results, viewing 177
running 176

W
web application firewalls (WAFs) 203
Windows Communication Foundation

(WCF) services 284
Windows Presentation Foundation

(WPF) 379, 384
Write Every Time (WET) 113

X
XML documentation comments 125, 126
XML tags, for C# code documentation

reference link 64
xUnit 175

Assert class 175
constructor 175
dispose method 175
Fact attribute 175
skip attribute 175
Test class 175
Theory attribute 175
trait attribute 175

Y
You Ain’t Gonna Need It (YAGNI)

principle 5, 8

Z
Zalando 427

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Real-World Implementation of C# Design Patterns

Bruce M. Van Horn II

ISBN: 978-1-80324-273-6

•	 Get to grips with patterns, and discover how to conceive and document them

•	 Explore common patterns that may come up in your everyday work

•	 Recognize common anti-patterns early in the process

•	 Use creational patterns to create flexible and robust object structures

•	 Enhance class designs with structural patterns

•	 Simplify object interaction and behavior with behavioral patterns

https://packt.link/9781803242736

467Other Books You May Enjoy

Refactoring with C#

Matt Eland

ISBN: 978-1-83508-998-9

•	 Understand technical debt, its causes and effects, and ways to prevent it

•	 Explore different ways of refactoring classes, methods, and lines of code

•	 Discover how to write effective unit tests supported by libraries such as Moq

•	 Understand SOLID principles and factors that lead to maintainable code

•	 Use AI to analyze, improve, and test code with the GitHub Copilot Chat

•	 Apply code analysis and custom Roslyn analyzers to ensure that code stays clean

•	 Communicate tech debt and code standards successfully in agile teams

https://packt.link/9781835089989

468

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Clean Code with C# , we’d love to hear your thoughts! If you purchased the book
from Amazon, please click here to go straight to the Amazon review page for this book and share
your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1837635196

469

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837635191

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837635191

	Cover
	Title page
	Copyright and credits
	Contributors
	Table of Contents
	Preface
	Chapter 1: Coding Standards and Principles in C#
	Technical requirements
	Good code versus bad code
	The need for coding standards, principles, and methodologies
	Coding standards
	Coding principles
	Coding methodologies

	Summary
	Questions
	Further reading

	Chapter 2: Code Review – Process
and Importance
	A brief introduction to GitHub
	What is GitHub?
	GitHub’s use within the code review process
	Resources for learning

	The code review process
	Preparing code for review
	Leading a code review
	Issuing a pull request
	Responding to a pull request
	Effects of feedback on reviewees

	Knowing what to review
	The company’s coding guidelines and business requirement(s)
	Naming conventions
	Formatting
	Testing
	Documentation
	Architectural guidelines and design patterns
	Performance and security

	Knowing when to send code for review
	Providing and responding to review feedback
	Providing feedback as a reviewer
	Responding to feedback as a reviewee

	Summary
	Questions
	Further reading

	Chapter 3: Classes, Objects,
and Data Structures
	Technical requirements
	Organizing classes
	A class should have only one responsibility
	Class organization
	Commenting for documentation generation
	Cohesion and coupling
	Tight coupling
	Low coupling
	Low cohesion
	High cohesion

	Designing for change
	Interface-oriented programming
	Dependency injection and inversion of control

	The Law of Demeter
	A good and a bad example (chaining) of the Law of Demeter

	Immutable objects and data structures
	Using records to create immutable objects

	Objects should hide data and expose methods
	An example of encapsulation

	Data structures should expose data and have no methods
	The SOLID software methodology
	SRP
	Open/closed principle (OCP)
	Liskov substitution principle (LSP)
	Interface segregation principle (ISP)
	Dependency inversion principle (DIP)

	Summary
	Questions
	Further reading

	Chapter 4: Writing Clean Functions
	Technical requirements
	Understanding the difference between OOP and FP
	Explanation of the differences
	Understanding why FP can lead to cleaner functions

	Unclean methods and how they affect software
	FP and clean methods
	FP examples
	Keeping methods small
	Indenting code
	Breaking out of loops
	Avoiding duplication
	Avoiding multiple parameters
	Implementing the SRP
	Handling exceptions in FP
	Adding comments for readability
	XML documentation comments
	Inline comments

	Variable declaration and memory management
	Declaring variables close to their usage
	Disposing of resources

	Applying security in methods, especially in APIs
	Input validation
	Authentication and authorization
	Protecting sensitive data

	Summary
	Questions
	Further reading

	Chapter 5: Exception Handling
	Technical requirements
	Overview of exception handling in C#
	try-catch
	try-catch-finally

	Clean code exception-handling principles
	SRP
	OCP
	DIP

	Best practices for handling exceptions
	Handling the TPL AggregateException exception
	Use await with try-catch inside async methods
	Flatten the exception hierarchy
	Handle individual exceptions
	Handle exceptions as they occur

	Creating custom exceptions and when to use them
	Avoiding common mistakes in exception handling
	Testing exception handling
	Unit testing exception handling
	Integration testing exception handling
	End-to-end testing exception handling

	An employee management example of mocking and unit testing with correct exception handling
	Summary
	Questions
	Further reading

	Chapter 6: Unit Testing
	Technical requirements
	Understanding unit testing
	Writing testable code
	TDD
	An example of using the AAA TDD pattern

	Choosing a testing framework
	Testing framework attribute differences
	TDD using MSTest
	TDD using NUnit
	TDD using xUnit
	Running tests in Visual Studio

	Writing effective unit tests
	Using code coverage analysis in Visual Studio 2022
	Ensuring your unit tests themselves are correct
	Using stubs in place of mocks
	Mocking data

	Integrating tests into the continuous integration and deployment (CI/CD) pipeline
	Integrating tests into an Azure DevOps CI/CD pipeline

	Problem tests
	Summary
	Questions
	Further reading

	Chapter 7: Designing and Developing APIs
	Technical requirements
	What is an API?
	APIs help different consumers build loosely coupled applications
	Idempotent and non-idempotent operations
	HTTP verbs
	Important API design topics you must consider
	How can clean code help API design and development?
	The API design process
	API security risks and their mitigations
	On-premises APIs versus cloud APIs

	API development in C#
	Web API security with OWASP
	Importance of OWASP adherence in C# API development
	Creating an OWASP-compliant API
	Implementing OWASP-compliant two-factor authentication (2FA)
	OpenID Connect (OIDC) and OAuth 2.0 (OAuth2)

	Summary
	Questions
	Further reading

	Chapter 8: Addressing Cross-Cutting Concerns
	A definition of cross-cutting concerns
	Importance and impact on software development
	Common examples of cross-cutting concerns
	Logging
	Error handling and exception management
	Caching
	Performance optimization
	Transaction management
	Validation
	Auditing and compliance
	Localization and internationalization
	Logging and monitoring

	Summary
	Questions
	Further reading

	Chapter 9: AOP with PostSharp
	Technical requirements
	AOP
	AOP frameworks

	How AOP works with PostSharp
	Extending the aspect framework

	Project – Cross-cutting concerns reusable library
	Adding a caching concern
	Adding file logging capabilities
	Adding an exception-handling concern
	Adding a security concern
	Adding a validation concern
	Adding a transaction concern
	Adding a resource pool concern
	Adding a configuration settings concern
	Adding an instrumentation concern

	PostSharp and build pipeline considerations
	Dynamic AOP with Castle.DynamicProxy
	Summary
	Questions
	Further reading

	Chapter 10: Using Tools to Improve
Code Quality
	Technical requirements
	Code analysis
	Using quick actions
	Using the JetBrains dotTrace profiler
	Using JetBrains ReSharper
	Using Telerik JustDecompile
	Continuous integration with GitHub Actions and CodeQL
	Summary
	Questions
	Further reading

	Chapter 11: Refactoring C# Code
	Technical requirements
	Application-level code smells
	Boolean blindness
	Combinatorial explosion
	Contrived complexity
	Data clump
	Deodorant comments
	Duplicate code
	Lost intent
	The mutation of variables
	The oddball solution
	Shotgun surgery
	Solution sprawl
	Uncontrolled side effects

	Class-level code smells
	Cyclomatic complexity
	Divergent change
	Downcasting
	Excessive literal use
	Feature envy
	Inappropriate intimacy
	Indecent exposure
	The large class (the God object)
	The lazy class (the freeloader and the lazy object)
	The middleman class
	The orphan class of variables and constants
	Primitive obsession
	Refused bequest
	Speculative generality
	Tell, Don’t Ask
	Temporary fields

	Method-level smells
	The black sheep method
	Cyclomatic complexity
	Contrived complexity
	Dead code
	Excessive data return
	Feature envy
	Identifier size
	Inappropriate intimacy
	Long lines (God lines)
	Lazy methods
	Long methods (God methods)
	Long parameter lists (too many parameters)
	Message chains
	The middleman method
	Oddball solutions
	Speculative generality

	Summary
	Questions
	Further reading

	Chapter 12: Functional Programming
	Technical requirements
	Imperative versus functional programming
	Imperative programming
	Key differences

	Overview of functional programming in C#
	First-class functions and Lambda expressions
	Lambda expressions in C#
	Higher-order functions
	Immutability and pure functions
	Functional composition
	Using Lambda expressions
	Using LINQ and extension methods
	Using higher-order functions

	Option types and the Maybe monad
	Usage of option types in C#
	The Maybe monad in C#

	Functional error handling
	Option types
	The Maybe monad
	The Either monad
	Result objects

	Functional data transformation and pipelines
	Lazy evaluation
	Pattern matching
	Currying and partial application
	Currying
	Partial application
	Key differences

	Concurrency with functional programming
	Recursion
	Summary
	Questions
	Further reading

	Chapter 13: Cross-Platform Application Development with MAUI
	Technical requirements
	Project overview
	Windows version
	Android version

	Creating the project
	Understanding XAML structure
	The MVVM pattern
	Adding CommunityToolkit.Mvvm
	The models
	The ViewModels
	The views
	Configuring our to-do application

	Summary
	Questions
	Further reading

	Chapter 14: Microservices
	What are microservices?
	The downsides of microservices, some gotchas experienced by microservices, and how they can be overcome and avoided
	Comparison between microservices and monoliths

	The design process for building successful microservices
	The application life cycle management (ALM) of microservices
	Microservice architecture patterns
	Service registration and discovery
	Service discovery
	Service registration

	Containerization and orchestration of microservices
	Containerization
	Orchestration

	Serverless
	API gateways
	Event-driven communication
	Service resilience and fault tolerance
	Service monitoring and observability
	Service monitoring
	Observability

	Security
	CI/CD
	Microservice testing
	Scaling microservices
	Versioning and compatibility
	Microservices best practices and anti-patterns
	Microservices best practices
	Microservices anti-patterns

	Case studies and real-world examples
	Summary
	Questions
	Further reading

	Assessments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14

	Index
	Other Books You May Enjoy

